YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Statistical Volume Elements for the Characterization of Angle-Dependent Fracture Strengths in Anisotropic Microcracked Materials

    Source: ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg:;2020:;volume( 006 ):;issue: 002
    Author:
    Garrard, Justin M.
    ,
    Abedi, Reza
    DOI: 10.1115/1.4044607
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Statistical volume elements (SVEs) are used to homogenize fracture strength of rock, based on the microcrack statistics of a real-world Yuen-Long marble sample. The small size of SVEs enables maintaining inhomogeneities in fracture properties with lower computational cost compared to methods that explicitly model microcracks at macroscale. Maintaining inhomogeneity is important to capture realistic fracture patterns in rock as a quasi-brittle material. Uniaxial tensile, uniaxial compressive, and shear strengths are derived for arbitrary angle for loading and orientation of a single crack by using the linear elastic fracture mechanics (LEFM) method and incorporating frictional effects. Mesoscopic fracture strength fields are generated for different strengths and angle of loading by traversing the spatial domain with circular SVEs. Increasing the SVE size smoothens the spatial inhomogeneity and angular anisotropy of homogenized strengths. Spatial and angular covariance functions of the random fields are obtained to demonstrate how fracture strength varies in space and by changing the angle of loading. Two isotropic and anisotropic rock domains are studied and shown to have very different single- and two-point statistics. Macroscopic fracture simulations by an asynchronous spacetime discontinuous Galerkin (aSDG) method demonstrate that most macroscopic cracks for the anisotropic domain are aligned with the weakest strength planes.
    • Download: (17.25Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Statistical Volume Elements for the Characterization of Angle-Dependent Fracture Strengths in Anisotropic Microcracked Materials

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273603
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering

    Show full item record

    contributor authorGarrard, Justin M.
    contributor authorAbedi, Reza
    date accessioned2022-02-04T14:24:34Z
    date available2022-02-04T14:24:34Z
    date copyright2020/03/30/
    date issued2020
    identifier issn2332-9017
    identifier otherrisk_006_02_021008.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273603
    description abstractStatistical volume elements (SVEs) are used to homogenize fracture strength of rock, based on the microcrack statistics of a real-world Yuen-Long marble sample. The small size of SVEs enables maintaining inhomogeneities in fracture properties with lower computational cost compared to methods that explicitly model microcracks at macroscale. Maintaining inhomogeneity is important to capture realistic fracture patterns in rock as a quasi-brittle material. Uniaxial tensile, uniaxial compressive, and shear strengths are derived for arbitrary angle for loading and orientation of a single crack by using the linear elastic fracture mechanics (LEFM) method and incorporating frictional effects. Mesoscopic fracture strength fields are generated for different strengths and angle of loading by traversing the spatial domain with circular SVEs. Increasing the SVE size smoothens the spatial inhomogeneity and angular anisotropy of homogenized strengths. Spatial and angular covariance functions of the random fields are obtained to demonstrate how fracture strength varies in space and by changing the angle of loading. Two isotropic and anisotropic rock domains are studied and shown to have very different single- and two-point statistics. Macroscopic fracture simulations by an asynchronous spacetime discontinuous Galerkin (aSDG) method demonstrate that most macroscopic cracks for the anisotropic domain are aligned with the weakest strength planes.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleStatistical Volume Elements for the Characterization of Angle-Dependent Fracture Strengths in Anisotropic Microcracked Materials
    typeJournal Paper
    journal volume6
    journal issue2
    journal titleASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg
    identifier doi10.1115/1.4044607
    page21008
    treeASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg:;2020:;volume( 006 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian