YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluation of an Improved Suspension System Concept for Surgical Luminaires

    Source: Journal of Medical Devices:;2020:;volume( 014 ):;issue: 002
    Author:
    Knulst, Arjan J.
    ,
    Harms, Jan Jouke
    ,
    Dankelman, Jenny
    DOI: 10.1115/1.4046797
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Surgeons have indicated ergonomic problems with the surgical luminaire, which have been observed to occur during repositioning. The possibility of singularity, within the movement space of the translational subsystem of the current double-arm suspension systems, is confirmed to be the cause of these problems. In this study, a redesign of the translational subsystem is compared to the conventional translational subsystem. A user experiment with 14 participants is setup to compare the redesigned and alternative system. The experiment is performed outside the operating room (OR), with one setup that can be altered between two designs; an uncoupled state with the kinematics of the conventional subsystem, and a coupled state with the redesigned kinematics. Work cost, duration, and jerk cost are compared, as well as NASA TLX score. The work cost of a movement in the conventional uncoupled state is confirmed to depend on the spatial orientation of the mechanism, which is not the case in the new coupled state. Due to these different kinetics, the movement patterns with the coupled mechanism are more consistent between participants, the duration of movements is shorter, less problems occur, and participants are able to better control the movements as demonstrated by lower jerk costs. This result validates the redesign and confirms the hypothesis that a translational subsystem without the possibility of singularity within its movement space will improve luminaire repositioning. The conceptual design can now be used as base for a clinically usable design.
    • Download: (2.947Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluation of an Improved Suspension System Concept for Surgical Luminaires

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273598
    Collections
    • Journal of Medical Devices

    Show full item record

    contributor authorKnulst, Arjan J.
    contributor authorHarms, Jan Jouke
    contributor authorDankelman, Jenny
    date accessioned2022-02-04T14:24:27Z
    date available2022-02-04T14:24:27Z
    date copyright2020/04/10/
    date issued2020
    identifier issn1932-6181
    identifier othermed_014_02_021007.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273598
    description abstractSurgeons have indicated ergonomic problems with the surgical luminaire, which have been observed to occur during repositioning. The possibility of singularity, within the movement space of the translational subsystem of the current double-arm suspension systems, is confirmed to be the cause of these problems. In this study, a redesign of the translational subsystem is compared to the conventional translational subsystem. A user experiment with 14 participants is setup to compare the redesigned and alternative system. The experiment is performed outside the operating room (OR), with one setup that can be altered between two designs; an uncoupled state with the kinematics of the conventional subsystem, and a coupled state with the redesigned kinematics. Work cost, duration, and jerk cost are compared, as well as NASA TLX score. The work cost of a movement in the conventional uncoupled state is confirmed to depend on the spatial orientation of the mechanism, which is not the case in the new coupled state. Due to these different kinetics, the movement patterns with the coupled mechanism are more consistent between participants, the duration of movements is shorter, less problems occur, and participants are able to better control the movements as demonstrated by lower jerk costs. This result validates the redesign and confirms the hypothesis that a translational subsystem without the possibility of singularity within its movement space will improve luminaire repositioning. The conceptual design can now be used as base for a clinically usable design.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEvaluation of an Improved Suspension System Concept for Surgical Luminaires
    typeJournal Paper
    journal volume14
    journal issue2
    journal titleJournal of Medical Devices
    identifier doi10.1115/1.4046797
    page21007
    treeJournal of Medical Devices:;2020:;volume( 014 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian