YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Frost Halo Dynamics on Superhydrophobic Surfaces

    Source: Journal of Heat Transfer:;2020:;volume( 142 ):;issue: 003::page 30901
    Author:
    Su, Wei
    ,
    Li, Longnan
    ,
    Yan, Xiao
    ,
    Miljkovic, Nenad
    DOI: 10.1115/1.4046148
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Understanding the frosting mechanisms on solid surfaces is crucial to a broad range of industrial sectors such as aerospace, power transmission, and refrigeration. During the last few decades, extensive studies have been conducted on fundamental frosting phenomena, including ice nucleation, growth, bridging, and frost propagation, with few studies focusing on frost halo formation which has been shown to affect frosting dynamics on hydrophilic substrates. The role of frost halo dynamics formation on superhydrophobic surface remains unclear due to limited characterization in the past. Here, in order to study frost propagation dynamics, particularly freezing-induced vapor diffusion and frost halo formation, condensation frosting on highly-reflective nanostructured superhydrophobic surfaces (θ ≈170º) was visualized using high-speed top-view optical microscopy. Condensation frosting was initiated by cooling the surface to -20 ± 0.5°C in atmospheric conditions (relative humidity ≈50% and air temperature ≈25°C). We show that the wave front reaches neighboring supercooled droplets along the path of frost propagation, resulting in supercooled droplet freezing within ~100 ms and numerous microscale (~1 µm) condensing droplets forming around the primary freezing droplet. The microscale droplets form a condensate halo stretching two times the freezing droplet radius. The condensate halo was formed by the rapid evaporation of the supercooled recalescent freezing droplet due to the fast (~100 ms) release of latent heat, resulting in the heating of the freezing droplet and thus outwards diffusion of vapor. Further diffusion of vapor led to the subsequent evaporation of the halo condensate droplets within ~4 s. Interestingly, accompanied by the freezing of the primary droplet and condensate halo formation, the neighboring satellite droplets in the halo zone were observed to oscillate directionally and dramatically, indicative of the presence of a strong flow field disturbance due to rapid vapor diffusion. The visualizations presented here not only help to quantify the physics of condensate halo formation during frost wave propagation on superhydrophobic surfaces, but also provide insights into the role of freezing-induced vapor diffusion during frost dynamics.
    • Download: (2.981Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Frost Halo Dynamics on Superhydrophobic Surfaces

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273596
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorSu, Wei
    contributor authorLi, Longnan
    contributor authorYan, Xiao
    contributor authorMiljkovic, Nenad
    date accessioned2022-02-04T14:24:25Z
    date available2022-02-04T14:24:25Z
    date copyright2020/02/05/
    date issued2020
    identifier issn0022-1481
    identifier otherht_142_03_030901.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273596
    description abstractUnderstanding the frosting mechanisms on solid surfaces is crucial to a broad range of industrial sectors such as aerospace, power transmission, and refrigeration. During the last few decades, extensive studies have been conducted on fundamental frosting phenomena, including ice nucleation, growth, bridging, and frost propagation, with few studies focusing on frost halo formation which has been shown to affect frosting dynamics on hydrophilic substrates. The role of frost halo dynamics formation on superhydrophobic surface remains unclear due to limited characterization in the past. Here, in order to study frost propagation dynamics, particularly freezing-induced vapor diffusion and frost halo formation, condensation frosting on highly-reflective nanostructured superhydrophobic surfaces (θ ≈170º) was visualized using high-speed top-view optical microscopy. Condensation frosting was initiated by cooling the surface to -20 ± 0.5°C in atmospheric conditions (relative humidity ≈50% and air temperature ≈25°C). We show that the wave front reaches neighboring supercooled droplets along the path of frost propagation, resulting in supercooled droplet freezing within ~100 ms and numerous microscale (~1 µm) condensing droplets forming around the primary freezing droplet. The microscale droplets form a condensate halo stretching two times the freezing droplet radius. The condensate halo was formed by the rapid evaporation of the supercooled recalescent freezing droplet due to the fast (~100 ms) release of latent heat, resulting in the heating of the freezing droplet and thus outwards diffusion of vapor. Further diffusion of vapor led to the subsequent evaporation of the halo condensate droplets within ~4 s. Interestingly, accompanied by the freezing of the primary droplet and condensate halo formation, the neighboring satellite droplets in the halo zone were observed to oscillate directionally and dramatically, indicative of the presence of a strong flow field disturbance due to rapid vapor diffusion. The visualizations presented here not only help to quantify the physics of condensate halo formation during frost wave propagation on superhydrophobic surfaces, but also provide insights into the role of freezing-induced vapor diffusion during frost dynamics.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFrost Halo Dynamics on Superhydrophobic Surfaces
    typeJournal Paper
    journal volume142
    journal issue3
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4046148
    journal fristpage30901
    page30901
    treeJournal of Heat Transfer:;2020:;volume( 142 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian