YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design for Interface Stiffness of Mechanical Products Using Integrated Simulation and Optimization Under Uncertainty

    Source: ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg:;2020:;volume( 006 ):;issue: 002
    Author:
    Zhang, J.
    ,
    Wu, M.
    ,
    Peng, Q.
    ,
    Dixit, U. S.
    ,
    Gu, P.
    DOI: 10.1115/1.4045556
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Interface stiffness is an important factor influencing the performance of mechanical products. Uncertain factors affect the interface stiffness and stability in the process of product design, manufacture, and operation. How to reduce the impact of uncertain factors on the interface stiffness is a vital problem in interface design. In this paper, a robust optimal design method is proposed for mechanical interfaces considering uncertain factors, which combines the finite element simulation, experiment, and optimization to reduce the sensitivity of interface stiffness to uncertain factors. The proposed interface design method provides an effective way to improve the interface stiffness under uncertain conditions. In order to validate the proposed method, the bolted connection structure of a flange is applied as an example. The interface stiffness of the flange is selected as an optimization target, and the Gaussian process regression is used to construct a two-layer optimal model of the objective function for the design and uncertain parameters. When experimental and optimization results differ significantly, the Kalman filter is used to provide the feedback for the optimization results until the results meet requirements. The final results show that the optimized mechanical interface stiffness is increased by 15.5%, and the error between the optimized prediction and experimental results is within 1% after three times experimental validation and feedback adjustment.
    • Download: (1.741Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design for Interface Stiffness of Mechanical Products Using Integrated Simulation and Optimization Under Uncertainty

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273582
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering

    Show full item record

    contributor authorZhang, J.
    contributor authorWu, M.
    contributor authorPeng, Q.
    contributor authorDixit, U. S.
    contributor authorGu, P.
    date accessioned2022-02-04T14:23:57Z
    date available2022-02-04T14:23:57Z
    date copyright2020/03/30/
    date issued2020
    identifier issn2332-9017
    identifier otherrisk_006_02_021006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273582
    description abstractInterface stiffness is an important factor influencing the performance of mechanical products. Uncertain factors affect the interface stiffness and stability in the process of product design, manufacture, and operation. How to reduce the impact of uncertain factors on the interface stiffness is a vital problem in interface design. In this paper, a robust optimal design method is proposed for mechanical interfaces considering uncertain factors, which combines the finite element simulation, experiment, and optimization to reduce the sensitivity of interface stiffness to uncertain factors. The proposed interface design method provides an effective way to improve the interface stiffness under uncertain conditions. In order to validate the proposed method, the bolted connection structure of a flange is applied as an example. The interface stiffness of the flange is selected as an optimization target, and the Gaussian process regression is used to construct a two-layer optimal model of the objective function for the design and uncertain parameters. When experimental and optimization results differ significantly, the Kalman filter is used to provide the feedback for the optimization results until the results meet requirements. The final results show that the optimized mechanical interface stiffness is increased by 15.5%, and the error between the optimized prediction and experimental results is within 1% after three times experimental validation and feedback adjustment.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDesign for Interface Stiffness of Mechanical Products Using Integrated Simulation and Optimization Under Uncertainty
    typeJournal Paper
    journal volume6
    journal issue2
    journal titleASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg
    identifier doi10.1115/1.4045556
    page21006
    treeASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg:;2020:;volume( 006 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian