YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Decentralized Multisubsystem Co-Design Optimization Using Direct Collocation and Decomposition-Based Methods

    Source: Journal of Mechanical Design:;2020:;volume( 142 ):;issue: 009
    Author:
    Liu, Tianchen
    ,
    Azarm, Shapour
    ,
    Chopra, Nikhil
    DOI: 10.1115/1.4046438
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Multisubsystem co-design refers to the simultaneous optimization of physical plant and controller of a system decomposed into multiple interconnected subsystems. In this paper, two decentralized (multilevel and bilevel) approaches are formulated to solve multisubsystem co-design problems, which are based on the direct collocation and decomposition-based optimization methods. In the multilevel approach, the problem is decomposed into two bilevel optimization problems, one for the physical plant and the other for the control part. In the bilevel approach, the problem is decomposed into subsystem optimization subproblems, with each subproblem having the optimization model for physical plant and control parts together. In both cases, the entire time horizon is discretized to convert the continuous optimal control problem into a finite-dimensional nonlinear program. The optimality condition decomposition method is employed to solve the converted problem in a decentralized manner. Using the proposed approaches, it is possible to obtain an optimal solution for more generalized multisubsystem co-design problems than was previously possible, including those with nonlinear dynamic constraints. The proposed approaches are applied to a numerical and engineering example. For both examples, the solutions obtained by the decentralized approaches are compared with a centralized (all-at-once) approach. Finally, a scalable version of the engineering example is solved to demonstrate that using a simulated parallelization with and without communication delays, the computational time of the proposed decentralized approaches can outperform a centralized approach as the size of the problem increases.
    • Download: (621.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Decentralized Multisubsystem Co-Design Optimization Using Direct Collocation and Decomposition-Based Methods

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273516
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorLiu, Tianchen
    contributor authorAzarm, Shapour
    contributor authorChopra, Nikhil
    date accessioned2022-02-04T14:22:07Z
    date available2022-02-04T14:22:07Z
    date copyright2020/05/08/
    date issued2020
    identifier issn1050-0472
    identifier othermd_142_9_091704.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273516
    description abstractMultisubsystem co-design refers to the simultaneous optimization of physical plant and controller of a system decomposed into multiple interconnected subsystems. In this paper, two decentralized (multilevel and bilevel) approaches are formulated to solve multisubsystem co-design problems, which are based on the direct collocation and decomposition-based optimization methods. In the multilevel approach, the problem is decomposed into two bilevel optimization problems, one for the physical plant and the other for the control part. In the bilevel approach, the problem is decomposed into subsystem optimization subproblems, with each subproblem having the optimization model for physical plant and control parts together. In both cases, the entire time horizon is discretized to convert the continuous optimal control problem into a finite-dimensional nonlinear program. The optimality condition decomposition method is employed to solve the converted problem in a decentralized manner. Using the proposed approaches, it is possible to obtain an optimal solution for more generalized multisubsystem co-design problems than was previously possible, including those with nonlinear dynamic constraints. The proposed approaches are applied to a numerical and engineering example. For both examples, the solutions obtained by the decentralized approaches are compared with a centralized (all-at-once) approach. Finally, a scalable version of the engineering example is solved to demonstrate that using a simulated parallelization with and without communication delays, the computational time of the proposed decentralized approaches can outperform a centralized approach as the size of the problem increases.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDecentralized Multisubsystem Co-Design Optimization Using Direct Collocation and Decomposition-Based Methods
    typeJournal Paper
    journal volume142
    journal issue9
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.4046438
    page91704
    treeJournal of Mechanical Design:;2020:;volume( 142 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian