YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Effects of Prosthesis Inversion/Eversion Stiffness on Balance-Related Variability During Level Walking: A Pilot Study

    Source: Journal of Biomechanical Engineering:;2020:;volume( 142 ):;issue: 009
    Author:
    Kim, Myunghee
    ,
    Lyness, Hannah
    ,
    Chen, Tianjian
    ,
    Collins, Steven H.
    DOI: 10.1115/1.4046881
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Prosthesis features that enhance balance are desirable to people with transtibial amputation. Ankle inversion/eversion compliance is intended to improve balance on uneven ground, but its effects remain unclear on level ground. We posited that increasing ankle inversion/eversion stiffness during level-ground walking would reduce balance-related effort by assisting in recovery from small disturbances in frontal-plane motions. We performed a pilot test with an ankle-foot prosthesis emulator programmed to apply inversion/eversion torques in proportion to the deviation from a nominal inversion/eversion position trajectory. We applied a range of stiffnesses to clearly understand the effect of the stiffness on balance-related effort, hypothesizing that positive stiffness would reduce effort while negative stiffness would increase effort. Nominal joint angle trajectories were calculated online as a moving average over several steps. In experiments with K3 ambulators with unilateral transtibial amputation (N = 5), stiffness affected step-width variability, average step width, margin of stability, intact-foot center of pressure variability, and user satisfaction (p ≤ 0.05, Friedman's test), but not intact-limb evertor average, intact-limb evertor variability, and metabolic rate (p ≥ 0.38, Friedman's test). Compared to zero stiffness, high positive stiffness reduced step-width variability by 13%, step width by 3%, margin of stability by 3%, and intact-foot center of pressure variability by 14%, whereas high negative stiffness had opposite effects and decreased satisfaction by 63%. The results of this pilot study suggest that positive ankle inversion stiffness can reduce active control requirements during level walking.
    • Download: (1.341Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Effects of Prosthesis Inversion/Eversion Stiffness on Balance-Related Variability During Level Walking: A Pilot Study

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273496
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorKim, Myunghee
    contributor authorLyness, Hannah
    contributor authorChen, Tianjian
    contributor authorCollins, Steven H.
    date accessioned2022-02-04T14:21:25Z
    date available2022-02-04T14:21:25Z
    date copyright2020/05/14/
    date issued2020
    identifier issn0148-0731
    identifier otherbio_142_09_091011.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273496
    description abstractProsthesis features that enhance balance are desirable to people with transtibial amputation. Ankle inversion/eversion compliance is intended to improve balance on uneven ground, but its effects remain unclear on level ground. We posited that increasing ankle inversion/eversion stiffness during level-ground walking would reduce balance-related effort by assisting in recovery from small disturbances in frontal-plane motions. We performed a pilot test with an ankle-foot prosthesis emulator programmed to apply inversion/eversion torques in proportion to the deviation from a nominal inversion/eversion position trajectory. We applied a range of stiffnesses to clearly understand the effect of the stiffness on balance-related effort, hypothesizing that positive stiffness would reduce effort while negative stiffness would increase effort. Nominal joint angle trajectories were calculated online as a moving average over several steps. In experiments with K3 ambulators with unilateral transtibial amputation (N = 5), stiffness affected step-width variability, average step width, margin of stability, intact-foot center of pressure variability, and user satisfaction (p ≤ 0.05, Friedman's test), but not intact-limb evertor average, intact-limb evertor variability, and metabolic rate (p ≥ 0.38, Friedman's test). Compared to zero stiffness, high positive stiffness reduced step-width variability by 13%, step width by 3%, margin of stability by 3%, and intact-foot center of pressure variability by 14%, whereas high negative stiffness had opposite effects and decreased satisfaction by 63%. The results of this pilot study suggest that positive ankle inversion stiffness can reduce active control requirements during level walking.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Effects of Prosthesis Inversion/Eversion Stiffness on Balance-Related Variability During Level Walking: A Pilot Study
    typeJournal Paper
    journal volume142
    journal issue9
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4046881
    page91011
    treeJournal of Biomechanical Engineering:;2020:;volume( 142 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian