YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Effect of Strain Rate on the Stress Relaxation of the Pig Dermis: A Hyper-Viscoelastic Approach

    Source: Journal of Biomechanical Engineering:;2020:;volume( 142 ):;issue: 009
    Author:
    Dwivedi, Krashn K.
    ,
    Lakhani, Piyush
    ,
    Kumar, Sachin
    ,
    Kumar, Navin
    DOI: 10.1115/1.4046205
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The understanding of strain rate-dependent mechanical properties of the skin is important for accurate prediction of its biomechanics under different loading conditions. This study investigated the effect of strain rate, i.e., 0.025/s (low), 0.5/s (medium), and 1.25/s (high), ranging in the physiological loading rate of connective tissue, on the stress-relaxation response of the porcine dermis. Results show that in the initial phase of the relaxation, the value of stress relaxation (extent of relaxation) was found higher for high strain rate. However, the equilibrium stress was found strain rate independent. A Mooney–Rivlin-based five-term quasi-linear viscoelastic (QLV) model was proposed to determine the effect of strain rate on the stress-relaxation behavior of the porcine dermis. The value of relaxation modulus G1 and G2 were found higher for the high strain rate, whereas the reverse trend was observed for G3, G4, and G5. Moreover, the value of time constants τ1,τ2,τ3τ4, and τ5 were found higher for low strain rate. Statistical analysis shows no significant difference in the values of G5, τ4, and τ5 among the three strain rates. The proposed model was found capable to fit the stress-relaxation response of skin with great accuracy, e.g., root-mean-squared-error (RMSE) value equal to 0.015 ± 0.00012 MPa. Moreover, this hyper-viscoelastic model can be utilized: to quantify the effects of age and diseases on the skin; to simulate the stresses on sutures during large wound closure and impact loading.
    • Download: (3.082Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Effect of Strain Rate on the Stress Relaxation of the Pig Dermis: A Hyper-Viscoelastic Approach

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273491
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorDwivedi, Krashn K.
    contributor authorLakhani, Piyush
    contributor authorKumar, Sachin
    contributor authorKumar, Navin
    date accessioned2022-02-04T14:21:13Z
    date available2022-02-04T14:21:13Z
    date copyright2020/04/13/
    date issued2020
    identifier issn0148-0731
    identifier otherbio_142_09_091006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273491
    description abstractThe understanding of strain rate-dependent mechanical properties of the skin is important for accurate prediction of its biomechanics under different loading conditions. This study investigated the effect of strain rate, i.e., 0.025/s (low), 0.5/s (medium), and 1.25/s (high), ranging in the physiological loading rate of connective tissue, on the stress-relaxation response of the porcine dermis. Results show that in the initial phase of the relaxation, the value of stress relaxation (extent of relaxation) was found higher for high strain rate. However, the equilibrium stress was found strain rate independent. A Mooney–Rivlin-based five-term quasi-linear viscoelastic (QLV) model was proposed to determine the effect of strain rate on the stress-relaxation behavior of the porcine dermis. The value of relaxation modulus G1 and G2 were found higher for the high strain rate, whereas the reverse trend was observed for G3, G4, and G5. Moreover, the value of time constants τ1,τ2,τ3τ4, and τ5 were found higher for low strain rate. Statistical analysis shows no significant difference in the values of G5, τ4, and τ5 among the three strain rates. The proposed model was found capable to fit the stress-relaxation response of skin with great accuracy, e.g., root-mean-squared-error (RMSE) value equal to 0.015 ± 0.00012 MPa. Moreover, this hyper-viscoelastic model can be utilized: to quantify the effects of age and diseases on the skin; to simulate the stresses on sutures during large wound closure and impact loading.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Effect of Strain Rate on the Stress Relaxation of the Pig Dermis: A Hyper-Viscoelastic Approach
    typeJournal Paper
    journal volume142
    journal issue9
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4046205
    page91006
    treeJournal of Biomechanical Engineering:;2020:;volume( 142 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian