YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Numerical and Experimental Study on the Effects of CO2 on Laminar Diffusion Methane/Air Flames

    Source: Journal of Energy Resources Technology:;2020:;volume( 142 ):;issue: 008
    Author:
    Zhang, Lei
    ,
    Ren, Xiaohan
    ,
    Sun, Rui
    ,
    Levendis, Yiannis A.
    DOI: 10.1115/1.4046228
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Flue gas recirculation (FGR) is an effective method to reduce NOx emissions from the combustion of fuels, such as natural gas. Nitrogen, carbon dioxide, and water are the main components of flue gas. Nitrogen is an inert gas, and water can be condensed out of the effluent before FGR. However, recycled CO2 can alter the physical and chemical combustion characteristics of a fuel. This research investigated the effects of CO2 on CH4/air laminar diffusion flames, both experimentally and numerically. Experiments used laser-induced fluorescence to measure OH and CH distributions in the resulting flames, at different CO2 concentrations. Numerical methods were used to investigate the reaction mechanism and predict temperature and species concentration fields, as well as the NOx formation. Experiments showed that the CH fluorescence intensities decreased with the addition of CO2, while the OH fluorescence intensities increased. Both the directed relation graph method and the sensitivity analysis method were used to reduce the GRI-mech 3.0 mechanism. The chemical kinetics of methane combustion were analyzed using the reduced mechanism with the diffusion opposed-flow flame model in the chemkin 4.1 software package to determine the main reactions among the major species. Numerical simulations showed that as the amount of CO2 in the fuel increased, the concentration of CH decreased. These CFD simulations using the reduced mechanism were in agreement with the experimental data. Thus, the reduced mechanism was then used to predict NO concentrations. Numerical simulations showed that as the amount of CO2 in the fuel increased, the concentration of CH decreased, and, as a result, lower amounts of NO were predicted.
    • Download: (1.062Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Numerical and Experimental Study on the Effects of CO2 on Laminar Diffusion Methane/Air Flames

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273469
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorZhang, Lei
    contributor authorRen, Xiaohan
    contributor authorSun, Rui
    contributor authorLevendis, Yiannis A.
    date accessioned2022-02-04T14:20:33Z
    date available2022-02-04T14:20:33Z
    date copyright2020/02/24/
    date issued2020
    identifier issn0195-0738
    identifier otherjert_142_8_082307.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273469
    description abstractFlue gas recirculation (FGR) is an effective method to reduce NOx emissions from the combustion of fuels, such as natural gas. Nitrogen, carbon dioxide, and water are the main components of flue gas. Nitrogen is an inert gas, and water can be condensed out of the effluent before FGR. However, recycled CO2 can alter the physical and chemical combustion characteristics of a fuel. This research investigated the effects of CO2 on CH4/air laminar diffusion flames, both experimentally and numerically. Experiments used laser-induced fluorescence to measure OH and CH distributions in the resulting flames, at different CO2 concentrations. Numerical methods were used to investigate the reaction mechanism and predict temperature and species concentration fields, as well as the NOx formation. Experiments showed that the CH fluorescence intensities decreased with the addition of CO2, while the OH fluorescence intensities increased. Both the directed relation graph method and the sensitivity analysis method were used to reduce the GRI-mech 3.0 mechanism. The chemical kinetics of methane combustion were analyzed using the reduced mechanism with the diffusion opposed-flow flame model in the chemkin 4.1 software package to determine the main reactions among the major species. Numerical simulations showed that as the amount of CO2 in the fuel increased, the concentration of CH decreased. These CFD simulations using the reduced mechanism were in agreement with the experimental data. Thus, the reduced mechanism was then used to predict NO concentrations. Numerical simulations showed that as the amount of CO2 in the fuel increased, the concentration of CH decreased, and, as a result, lower amounts of NO were predicted.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Numerical and Experimental Study on the Effects of CO2 on Laminar Diffusion Methane/Air Flames
    typeJournal Paper
    journal volume142
    journal issue8
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4046228
    page82307
    treeJournal of Energy Resources Technology:;2020:;volume( 142 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian