Descriptive Models of Sequential Decisions in Engineering Design: An Experimental StudySource: Journal of Mechanical Design:;2020:;volume( 142 ):;issue: 008DOI: 10.1115/1.4045605Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: Engineering design involves information acquisition decisions such as selecting designs in the design space for testing, selecting information sources, and deciding when to stop design exploration. Existing literature has established normative models for these decisions, but there is lack of knowledge about how human designers make these decisions and which strategies they use. This knowledge is important for accurately modeling design decisions, identifying sources of inefficiencies, and improving the design process. Therefore, the primary objective in this study is to identify models that provide the best description of a designer’s information acquisition decisions when multiple information sources are present and the total budget is limited. We conduct a controlled human subject experiment with two independent variables: the amount of fixed budget and the monetary incentive proportional to the saved budget. By using the experimental observations, we perform Bayesian model comparison on various simple heuristic models and expected utility (EU)-based models. As expected, the subjects’ decisions are better represented by the heuristic models than the EU-based models. While the EU-based models result in better net payoff, the heuristic models used by the subjects generate better design performance. The net payoff using heuristic models is closer to the EU-based models in experimental treatments where the budget is low and there is incentive for saving the budget. This indicates the potential for nudging designers’ decisions toward maximizing the net payoff by setting the fixed budget at low values and providing monetary incentives proportional to saved budget.
|
Collections
Show full item record
contributor author | Chaudhari, Ashish M. | |
contributor author | Bilionis, Ilias | |
contributor author | Panchal, Jitesh H. | |
date accessioned | 2022-02-04T14:19:57Z | |
date available | 2022-02-04T14:19:57Z | |
date copyright | 2020/02/14/ | |
date issued | 2020 | |
identifier issn | 1050-0472 | |
identifier other | md_142_8_081704.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4273447 | |
description abstract | Engineering design involves information acquisition decisions such as selecting designs in the design space for testing, selecting information sources, and deciding when to stop design exploration. Existing literature has established normative models for these decisions, but there is lack of knowledge about how human designers make these decisions and which strategies they use. This knowledge is important for accurately modeling design decisions, identifying sources of inefficiencies, and improving the design process. Therefore, the primary objective in this study is to identify models that provide the best description of a designer’s information acquisition decisions when multiple information sources are present and the total budget is limited. We conduct a controlled human subject experiment with two independent variables: the amount of fixed budget and the monetary incentive proportional to the saved budget. By using the experimental observations, we perform Bayesian model comparison on various simple heuristic models and expected utility (EU)-based models. As expected, the subjects’ decisions are better represented by the heuristic models than the EU-based models. While the EU-based models result in better net payoff, the heuristic models used by the subjects generate better design performance. The net payoff using heuristic models is closer to the EU-based models in experimental treatments where the budget is low and there is incentive for saving the budget. This indicates the potential for nudging designers’ decisions toward maximizing the net payoff by setting the fixed budget at low values and providing monetary incentives proportional to saved budget. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Descriptive Models of Sequential Decisions in Engineering Design: An Experimental Study | |
type | Journal Paper | |
journal volume | 142 | |
journal issue | 8 | |
journal title | Journal of Mechanical Design | |
identifier doi | 10.1115/1.4045605 | |
page | 81704 | |
tree | Journal of Mechanical Design:;2020:;volume( 142 ):;issue: 008 | |
contenttype | Fulltext |