YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Inverse, Decision-Based Design Method for Robust Concept Exploration

    Source: Journal of Mechanical Design:;2020:;volume( 142 ):;issue: 008
    Author:
    Nellippallil, Anand Balu
    ,
    Mohan, Pranav
    ,
    Allen, Janet K.
    ,
    Mistree, Farrokh
    DOI: 10.1115/1.4045877
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this paper, we extend our previous work on a goal-oriented inverse design method to carry out inverse robust design by managing the uncertainty involved. The extension embodies the introduction of specific robust design goals and new robust solution constraints anchored in the mathematical constructs of Error Margin Indices (EMIs) and Design Capability Indices (DCIs) to determine “satisficing” robust design specifications across analytical model-based process chains. Contributions in this paper include the designer’s ability to explore satisficing robust solution regions when multiple conflicting goals and multiple sources of uncertainty are present. Using the goal-oriented inverse design method, robust solutions are propagated in an inverse manner. We demonstrate the efficacy of the method and the associated robust design functionalities using an industry-inspired hot rolling and cooling process chain example problem for the production of a steel rod. In this example, we showcase the formulation of multiple mechanical property goals for the end product using the robustness metrics and the exploration of satisficing robust solutions for material microstructure after the cooling process using the robust solution constraints. The robust solutions thus identified are communicated in an inverse manner using the design method to explore satisficing robust solutions for the microstructure generated after the hot rolling process. Using the example, we demonstrate the robust co-design of material, product, and associated manufacturing processes. The method and the associated design constructs are generic and support the formulation and inverse robust design exploration under uncertainty of similar problems involving a sequential, analytical model-based flow of information across process chains.
    • Download: (1.592Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Inverse, Decision-Based Design Method for Robust Concept Exploration

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273445
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorNellippallil, Anand Balu
    contributor authorMohan, Pranav
    contributor authorAllen, Janet K.
    contributor authorMistree, Farrokh
    date accessioned2022-02-04T14:19:53Z
    date available2022-02-04T14:19:53Z
    date copyright2020/02/14/
    date issued2020
    identifier issn1050-0472
    identifier othermd_142_8_081703.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273445
    description abstractIn this paper, we extend our previous work on a goal-oriented inverse design method to carry out inverse robust design by managing the uncertainty involved. The extension embodies the introduction of specific robust design goals and new robust solution constraints anchored in the mathematical constructs of Error Margin Indices (EMIs) and Design Capability Indices (DCIs) to determine “satisficing” robust design specifications across analytical model-based process chains. Contributions in this paper include the designer’s ability to explore satisficing robust solution regions when multiple conflicting goals and multiple sources of uncertainty are present. Using the goal-oriented inverse design method, robust solutions are propagated in an inverse manner. We demonstrate the efficacy of the method and the associated robust design functionalities using an industry-inspired hot rolling and cooling process chain example problem for the production of a steel rod. In this example, we showcase the formulation of multiple mechanical property goals for the end product using the robustness metrics and the exploration of satisficing robust solutions for material microstructure after the cooling process using the robust solution constraints. The robust solutions thus identified are communicated in an inverse manner using the design method to explore satisficing robust solutions for the microstructure generated after the hot rolling process. Using the example, we demonstrate the robust co-design of material, product, and associated manufacturing processes. The method and the associated design constructs are generic and support the formulation and inverse robust design exploration under uncertainty of similar problems involving a sequential, analytical model-based flow of information across process chains.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Inverse, Decision-Based Design Method for Robust Concept Exploration
    typeJournal Paper
    journal volume142
    journal issue8
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.4045877
    page81703
    treeJournal of Mechanical Design:;2020:;volume( 142 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian