YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Small-Scale Rotor Design Variables and Their Effects on Aerodynamic and Aeroacoustic Performance of a Hovering Rotor

    Source: Journal of Fluids Engineering:;2020:;volume( 142 ):;issue: 008
    Author:
    Henricks, Quinten
    ,
    Wang, Zhenyu
    ,
    Zhuang, Mei
    DOI: 10.1115/1.4046872
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: With the increased prominence of multicopter micro-aerial vehicles, more importance has been placed on the aerodynamic and acoustic performance of these systems, as their small-scale and lower Reynolds number regime provide results that are different from full-scale rotors. A computational methodology was employed in order to study the aerodynamic and aeroacoustic performance from different small-scale rotors used in a multicopter configuration. Three rotor design variables (twist, taper, and pitch) were investigated in order to understand their influence on aerodynamic and acoustic performance of a hovering rotor. Variables such as rotor rotation rate and rotor radius were kept constant. Common aerodynamic performance metrics such as the ratio of coefficient of thrust to coefficient of power and figure of merit (FM) were used to assess aerodynamic hover performance of the designed rotors. Acoustic performance was assessed by recording acoustic pressure in the far-field at two separate receivers. Acoustic results are presented in the frequency domain as one-third octave band data and as overall sound pressure level (SPL). Flow fields and pressure contours were calculated and displayed in order to help explain aerodynamic and acoustic results. From the results, insights are provided for rotor designs that are more aerodynamically and acoustically efficient in hover. Specifically, rotors that provided lower values of disk loading and higher values of power loading were typically more acoustically efficient. Using greater rotor twist and taper increased both aerodynamic and acoustic performance.
    • Download: (3.643Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Small-Scale Rotor Design Variables and Their Effects on Aerodynamic and Aeroacoustic Performance of a Hovering Rotor

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273424
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorHenricks, Quinten
    contributor authorWang, Zhenyu
    contributor authorZhuang, Mei
    date accessioned2022-02-04T14:19:18Z
    date available2022-02-04T14:19:18Z
    date copyright2020/05/04/
    date issued2020
    identifier issn0098-2202
    identifier otherfe_142_08_081209.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273424
    description abstractWith the increased prominence of multicopter micro-aerial vehicles, more importance has been placed on the aerodynamic and acoustic performance of these systems, as their small-scale and lower Reynolds number regime provide results that are different from full-scale rotors. A computational methodology was employed in order to study the aerodynamic and aeroacoustic performance from different small-scale rotors used in a multicopter configuration. Three rotor design variables (twist, taper, and pitch) were investigated in order to understand their influence on aerodynamic and acoustic performance of a hovering rotor. Variables such as rotor rotation rate and rotor radius were kept constant. Common aerodynamic performance metrics such as the ratio of coefficient of thrust to coefficient of power and figure of merit (FM) were used to assess aerodynamic hover performance of the designed rotors. Acoustic performance was assessed by recording acoustic pressure in the far-field at two separate receivers. Acoustic results are presented in the frequency domain as one-third octave band data and as overall sound pressure level (SPL). Flow fields and pressure contours were calculated and displayed in order to help explain aerodynamic and acoustic results. From the results, insights are provided for rotor designs that are more aerodynamically and acoustically efficient in hover. Specifically, rotors that provided lower values of disk loading and higher values of power loading were typically more acoustically efficient. Using greater rotor twist and taper increased both aerodynamic and acoustic performance.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSmall-Scale Rotor Design Variables and Their Effects on Aerodynamic and Aeroacoustic Performance of a Hovering Rotor
    typeJournal Paper
    journal volume142
    journal issue8
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.4046872
    page81209
    treeJournal of Fluids Engineering:;2020:;volume( 142 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian