YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Influence of Frequency-Dependent Friction Modeling on the Simulation of Transient Flows in High-Pressure Flow Pipelines

    Source: Journal of Fluids Engineering:;2020:;volume( 142 ):;issue: 008
    Author:
    Ferrari, Alessandro
    ,
    Vento, Oscar
    DOI: 10.1115/1.4046623
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Frequency-dependent friction can be an important dissipative factor for unsteady flows. In this research investigation, various popular models have been reviewed thoroughly and then applied to evaluate frequency-dependent friction in high-pressure transient flows. Three piezoresistive transducers were used to measure pressure signals along a 2 m high-pressure pipe: the first and the third signal were assumed as boundary conditions in a homemade code that is able to solve the velocity and pressure fields along the pipe. The simulation pressure data have been compared with the pressure signal measured by means of the transducer installed in the middle of the pipe. In addition, an injector model has been applied to a 2 m pipe in order to perform additional simulations in which the rail pressure time distribution and the electrical current time history to the injector are provided as boundary conditions. It has been observed that when frequency-dependent friction is taken into account, more accurate pressure results are generally obtained along the injector supply line than in the case in which the viscous stress is calculated by only taking into account the steady-state Darcy–Weisbach contribution. On the other hand, on the basis of a comparison between the obtained numerical results and experimental traces, the improvement is not related to the method by which the unsteady friction is evaluated. Therefore, the simplest frequency-dependent friction model is recommended to simulate high-pressure transient flows in pipes with a shorter aspect ratio than 800 and lower Reynolds numbers than 104.
    • Download: (1.726Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Influence of Frequency-Dependent Friction Modeling on the Simulation of Transient Flows in High-Pressure Flow Pipelines

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273420
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorFerrari, Alessandro
    contributor authorVento, Oscar
    date accessioned2022-02-04T14:19:11Z
    date available2022-02-04T14:19:11Z
    date copyright2020/04/24/
    date issued2020
    identifier issn0098-2202
    identifier otherfe_142_08_081205.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273420
    description abstractFrequency-dependent friction can be an important dissipative factor for unsteady flows. In this research investigation, various popular models have been reviewed thoroughly and then applied to evaluate frequency-dependent friction in high-pressure transient flows. Three piezoresistive transducers were used to measure pressure signals along a 2 m high-pressure pipe: the first and the third signal were assumed as boundary conditions in a homemade code that is able to solve the velocity and pressure fields along the pipe. The simulation pressure data have been compared with the pressure signal measured by means of the transducer installed in the middle of the pipe. In addition, an injector model has been applied to a 2 m pipe in order to perform additional simulations in which the rail pressure time distribution and the electrical current time history to the injector are provided as boundary conditions. It has been observed that when frequency-dependent friction is taken into account, more accurate pressure results are generally obtained along the injector supply line than in the case in which the viscous stress is calculated by only taking into account the steady-state Darcy–Weisbach contribution. On the other hand, on the basis of a comparison between the obtained numerical results and experimental traces, the improvement is not related to the method by which the unsteady friction is evaluated. Therefore, the simplest frequency-dependent friction model is recommended to simulate high-pressure transient flows in pipes with a shorter aspect ratio than 800 and lower Reynolds numbers than 104.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleInfluence of Frequency-Dependent Friction Modeling on the Simulation of Transient Flows in High-Pressure Flow Pipelines
    typeJournal Paper
    journal volume142
    journal issue8
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.4046623
    page81205
    treeJournal of Fluids Engineering:;2020:;volume( 142 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian