YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Three-Dimensional Finite Element Analysis of the Effects of Ligaments on Human Sacroiliac Joint and Pelvis in Two Different Positions

    Source: Journal of Biomechanical Engineering:;2020:;volume( 142 ):;issue: 008
    Author:
    Yang, Jiajing
    ,
    Zhao, Gaiping
    ,
    Xu, Haifei
    ,
    Wang, Fei
    DOI: 10.1115/1.4046361
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: To present the ligament effects on sacroiliac joint (SIJ) stability and human pelvis biomechanical characteristics in two different positions by using three-dimensional (3D) finite element (FE) models of pelvis. Based on the computed tomography (CT) data of human pelvis, three-dimensional FE models of human pelvis in sitting and standing positions were established, which include the bone (sacrum, ilium, and coccyx) and six ligaments (sacroiliac, sacrospinous, sacrotuberous, inguinal, superior pubic, and arcuate pubic ligaments). 600 N vertical load was applied at the upper surface of sacrum to analyze the stress and displacement distribution of pelvis and SIJ. The simulation results demonstrated that the maximum stresses of sacrum and ilium on SIJ contact surface were 5.63 MPa and 7.40 MPa in standing position and 7.44 MPa and 7.95 MPa in sitting position. The stresses of ligament dysfunction group were higher than that of health group, which increased by 22.6% and 35.7% in standing position and 25.2% and 43.6% in sitting position in sacrum and ilium. The maximum displacements located on the upper surface of sacrum, which were 0.13 mm and 1.04 mm in standing and sitting positions. Ligaments dysfunction group increased 30.7% and 9.6% than health group in standing and sitting positions. The integral displacement of pelvis was greater in sitting position. The location of stress concentration and displacement distribution of pelvic bone are closely resembled previous research results in two different positions. The simulation results may provide beneficial information and theoretical models for clinical research of pelvic fracture, joint movement, and ligament functional injuries, and so on.
    • Download: (1.940Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Three-Dimensional Finite Element Analysis of the Effects of Ligaments on Human Sacroiliac Joint and Pelvis in Two Different Positions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273412
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorYang, Jiajing
    contributor authorZhao, Gaiping
    contributor authorXu, Haifei
    contributor authorWang, Fei
    date accessioned2022-02-04T14:18:58Z
    date available2022-02-04T14:18:58Z
    date copyright2020/04/08/
    date issued2020
    identifier issn0148-0731
    identifier otherbio_142_08_081007.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273412
    description abstractTo present the ligament effects on sacroiliac joint (SIJ) stability and human pelvis biomechanical characteristics in two different positions by using three-dimensional (3D) finite element (FE) models of pelvis. Based on the computed tomography (CT) data of human pelvis, three-dimensional FE models of human pelvis in sitting and standing positions were established, which include the bone (sacrum, ilium, and coccyx) and six ligaments (sacroiliac, sacrospinous, sacrotuberous, inguinal, superior pubic, and arcuate pubic ligaments). 600 N vertical load was applied at the upper surface of sacrum to analyze the stress and displacement distribution of pelvis and SIJ. The simulation results demonstrated that the maximum stresses of sacrum and ilium on SIJ contact surface were 5.63 MPa and 7.40 MPa in standing position and 7.44 MPa and 7.95 MPa in sitting position. The stresses of ligament dysfunction group were higher than that of health group, which increased by 22.6% and 35.7% in standing position and 25.2% and 43.6% in sitting position in sacrum and ilium. The maximum displacements located on the upper surface of sacrum, which were 0.13 mm and 1.04 mm in standing and sitting positions. Ligaments dysfunction group increased 30.7% and 9.6% than health group in standing and sitting positions. The integral displacement of pelvis was greater in sitting position. The location of stress concentration and displacement distribution of pelvic bone are closely resembled previous research results in two different positions. The simulation results may provide beneficial information and theoretical models for clinical research of pelvic fracture, joint movement, and ligament functional injuries, and so on.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThree-Dimensional Finite Element Analysis of the Effects of Ligaments on Human Sacroiliac Joint and Pelvis in Two Different Positions
    typeJournal Paper
    journal volume142
    journal issue8
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4046361
    page81007
    treeJournal of Biomechanical Engineering:;2020:;volume( 142 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian