YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Controllability Over Wall Thickness of Tubular Structures and Encapsulation During Co-Axial Extrusion of a Thermal-Crosslinking Hydrogel

    Source: Journal of Manufacturing Science and Engineering:;2020:;volume( 142 ):;issue: 008
    Author:
    Yu, Ilhan
    ,
    Grindrod, Samantha
    ,
    Chen, Roland
    DOI: 10.1115/1.4047091
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Tubular structures of the hydrogel are used in a variety of applications such as delivering nutrient supplies for 3D cell culturing. The wall thickness of the tube determines the delivery rate. In this study, we used the coaxial extrusion process to fabricate tubular structures with varying wall thicknesses using a thermal-crosslinking hydrogel, gellan gum (GG). The objectives of this study are to investigate the thermal extrusion process of GG to form tubular structures, the range of achievable wall thickness, and a possibility to form tubular structures with closed ends to encapsulate fluid or drug inside the tube. The wall thickness is controlled by changing the relative flow velocity of the inner needle (phosphate-buffered saline, PBS) to the outer needle, while keeping the velocity of outer needles (GG) constant. Two pairs of coaxial needles were used which are 18-12 gauge (G) and 20-12G. The controllable wall thickness ranges from 0.618 mm (100% relative velocity) to 0.499 mm (250%) for 18-12G and from 0.77 mm (80%) to 0.69 (200%) for 20-12G. Encapsulation is possible in a smaller range of flow velocities in both needle combinations. A finite element model was developed to estimate the temperature distribution and the wall thickness. The model is found to be accurate. The dynamic viscosity of GG determines the pressure equilibrium and the range of achievable wall thickness. Changing the inner needle size or the flow velocity both affect the heat exchange and thus the temperature-dependent dynamic viscosity.
    • Download: (933.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Controllability Over Wall Thickness of Tubular Structures and Encapsulation During Co-Axial Extrusion of a Thermal-Crosslinking Hydrogel

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273410
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorYu, Ilhan
    contributor authorGrindrod, Samantha
    contributor authorChen, Roland
    date accessioned2022-02-04T14:18:55Z
    date available2022-02-04T14:18:55Z
    date copyright2020/05/14/
    date issued2020
    identifier issn1087-1357
    identifier othermanu_142_8_081006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273410
    description abstractTubular structures of the hydrogel are used in a variety of applications such as delivering nutrient supplies for 3D cell culturing. The wall thickness of the tube determines the delivery rate. In this study, we used the coaxial extrusion process to fabricate tubular structures with varying wall thicknesses using a thermal-crosslinking hydrogel, gellan gum (GG). The objectives of this study are to investigate the thermal extrusion process of GG to form tubular structures, the range of achievable wall thickness, and a possibility to form tubular structures with closed ends to encapsulate fluid or drug inside the tube. The wall thickness is controlled by changing the relative flow velocity of the inner needle (phosphate-buffered saline, PBS) to the outer needle, while keeping the velocity of outer needles (GG) constant. Two pairs of coaxial needles were used which are 18-12 gauge (G) and 20-12G. The controllable wall thickness ranges from 0.618 mm (100% relative velocity) to 0.499 mm (250%) for 18-12G and from 0.77 mm (80%) to 0.69 (200%) for 20-12G. Encapsulation is possible in a smaller range of flow velocities in both needle combinations. A finite element model was developed to estimate the temperature distribution and the wall thickness. The model is found to be accurate. The dynamic viscosity of GG determines the pressure equilibrium and the range of achievable wall thickness. Changing the inner needle size or the flow velocity both affect the heat exchange and thus the temperature-dependent dynamic viscosity.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleControllability Over Wall Thickness of Tubular Structures and Encapsulation During Co-Axial Extrusion of a Thermal-Crosslinking Hydrogel
    typeJournal Paper
    journal volume142
    journal issue8
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4047091
    page81006
    treeJournal of Manufacturing Science and Engineering:;2020:;volume( 142 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian