YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Symmetric and Asymmetric Disturbances in the Rayleigh Zone of an Air-Assisted Liquid Sheet: Theoretical and Experimental Analysis

    Source: Journal of Fluids Engineering:;2020:;volume( 142 ):;issue: 007
    Author:
    Sivadas, V.
    ,
    Karthick, S.
    ,
    Balaji, K.
    DOI: 10.1115/1.4045998
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The temporal analysis of symmetric (dilatational) and asymmetric (sinusoidal) perturbations at the interface of a water sheet in a coflowing air stream focuses on low gas Weber number region (Weg < 0.4), namely, Rayleigh breakup zone. The motive for this investigation is to acquire a better insight of breakup phenomena involved, rather than technical relevance, by utilizing Kelvin–Helmholtz instability. Accordingly, perturbations are introduced on the basic flow whose stability is to be examined by the method of normal (Fourier) modes. The temporal growth-rate of perturbations is traced to extract the wavenumber associated with maximum growth-rate. Thus, the critical wavelength, in conjunction with the phase velocity of the disturbance will facilitate to obtain the corresponding breakup frequency of the liquid sheet. The analytical findings on liquid sheet breakup frequency with increasing Weber number ratio exhibit the dominance of symmetric wave over asymmetric wave. It also shows independent evolution of breakup frequency with respect to Weber number ratio for the respective perturbation modes, which appears to be a pointed profile. That is, the frequency contour for dilatational mode dips, whereas it rises for the sinusoidal mode and at the Weber number ratio of 0.518 the crossover occur. The theoretical results were substantiated by high-speed flow visualization studies that discern the coexistence of low-frequency (primary) and high-frequency (intermediate) breakup events. Furthermore, the empirical average frequency data track reasonably well with the dilatational instability.
    • Download: (2.866Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Symmetric and Asymmetric Disturbances in the Rayleigh Zone of an Air-Assisted Liquid Sheet: Theoretical and Experimental Analysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273349
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorSivadas, V.
    contributor authorKarthick, S.
    contributor authorBalaji, K.
    date accessioned2022-02-04T14:17:10Z
    date available2022-02-04T14:17:10Z
    date copyright2020/03/09/
    date issued2020
    identifier issn0098-2202
    identifier otherfe_142_07_071302.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273349
    description abstractThe temporal analysis of symmetric (dilatational) and asymmetric (sinusoidal) perturbations at the interface of a water sheet in a coflowing air stream focuses on low gas Weber number region (Weg < 0.4), namely, Rayleigh breakup zone. The motive for this investigation is to acquire a better insight of breakup phenomena involved, rather than technical relevance, by utilizing Kelvin–Helmholtz instability. Accordingly, perturbations are introduced on the basic flow whose stability is to be examined by the method of normal (Fourier) modes. The temporal growth-rate of perturbations is traced to extract the wavenumber associated with maximum growth-rate. Thus, the critical wavelength, in conjunction with the phase velocity of the disturbance will facilitate to obtain the corresponding breakup frequency of the liquid sheet. The analytical findings on liquid sheet breakup frequency with increasing Weber number ratio exhibit the dominance of symmetric wave over asymmetric wave. It also shows independent evolution of breakup frequency with respect to Weber number ratio for the respective perturbation modes, which appears to be a pointed profile. That is, the frequency contour for dilatational mode dips, whereas it rises for the sinusoidal mode and at the Weber number ratio of 0.518 the crossover occur. The theoretical results were substantiated by high-speed flow visualization studies that discern the coexistence of low-frequency (primary) and high-frequency (intermediate) breakup events. Furthermore, the empirical average frequency data track reasonably well with the dilatational instability.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSymmetric and Asymmetric Disturbances in the Rayleigh Zone of an Air-Assisted Liquid Sheet: Theoretical and Experimental Analysis
    typeJournal Paper
    journal volume142
    journal issue7
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.4045998
    page71302
    treeJournal of Fluids Engineering:;2020:;volume( 142 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian