YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • ASME Journal of Engineering for Sustainable Buildings and Cities
    • View Item
    •   YE&T Library
    • ASME
    • ASME Journal of Engineering for Sustainable Buildings and Cities
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeling and Simulation of Building Cooling System With Supercooling-Based Ice Energy Storage

    Source: ASME Journal of Engineering for Sustainable Buildings and Cities:;2020:;volume( 001 ):;issue: 002
    Author:
    Zhang, Yili
    ,
    Kissick, Sean
    ,
    Wang, Hailei
    DOI: 10.1115/1.4046788
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: City’s electricity power grid is under heavy load during on-peak hours throughout summer cooling season. As the result, many utility companies implemented the time-of-use rate of electricity leading to high electricity cost for customers with significant cooling needs. On the other hand, the need for electricity and/or cooling decreases greatly at night, creating excess electricity capacity for further utilization. An innovative ice energy storage system is being developed leveraging a unique supercooling-based ice production process. During off-peak hours, the proposed system stores the low-cost electric energy in the form of ice; during on-peak hours, the system releases the stored energy to meet extensive home cooling needs. Thus, it can not only reduce energy and cost of cooling, but also increase the penetration of renewable energies (especially wind energy). In this paper, the working principles of the system is presented along with the modeling details of the overall system and several key components. The simulink model takes in hourly temperature and peak/off peak electricity cost data to dynamically simulate the amount of energy required and associated cost for cooling an average home. Both energy consumption and cost for homes using the cooling system with ice energy storage in two US cities have been compared with those using conventional HVAC cooling system. According to the model, huge reduction in energy cost (up to 3X) can be achieved over 6 months of cooling season in regions with high peak electricity rates. While only moderate reduction on energy consumption is predicted for the ice energy storage system, further energy reduction potentials have been identified for future study.
    • Download: (1.780Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeling and Simulation of Building Cooling System With Supercooling-Based Ice Energy Storage

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273342
    Collections
    • ASME Journal of Engineering for Sustainable Buildings and Cities

    Show full item record

    contributor authorZhang, Yili
    contributor authorKissick, Sean
    contributor authorWang, Hailei
    date accessioned2022-02-04T14:16:58Z
    date available2022-02-04T14:16:58Z
    date copyright2020/04/08/
    date issued2020
    identifier issn2642-6641
    identifier otherjesbc_1_2_021002.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273342
    description abstractCity’s electricity power grid is under heavy load during on-peak hours throughout summer cooling season. As the result, many utility companies implemented the time-of-use rate of electricity leading to high electricity cost for customers with significant cooling needs. On the other hand, the need for electricity and/or cooling decreases greatly at night, creating excess electricity capacity for further utilization. An innovative ice energy storage system is being developed leveraging a unique supercooling-based ice production process. During off-peak hours, the proposed system stores the low-cost electric energy in the form of ice; during on-peak hours, the system releases the stored energy to meet extensive home cooling needs. Thus, it can not only reduce energy and cost of cooling, but also increase the penetration of renewable energies (especially wind energy). In this paper, the working principles of the system is presented along with the modeling details of the overall system and several key components. The simulink model takes in hourly temperature and peak/off peak electricity cost data to dynamically simulate the amount of energy required and associated cost for cooling an average home. Both energy consumption and cost for homes using the cooling system with ice energy storage in two US cities have been compared with those using conventional HVAC cooling system. According to the model, huge reduction in energy cost (up to 3X) can be achieved over 6 months of cooling season in regions with high peak electricity rates. While only moderate reduction on energy consumption is predicted for the ice energy storage system, further energy reduction potentials have been identified for future study.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleModeling and Simulation of Building Cooling System With Supercooling-Based Ice Energy Storage
    typeJournal Paper
    journal volume1
    journal issue2
    journal titleASME Journal of Engineering for Sustainable Buildings and Cities
    identifier doi10.1115/1.4046788
    page21002
    treeASME Journal of Engineering for Sustainable Buildings and Cities:;2020:;volume( 001 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian