YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Simulation of Steam Flow Inside the Superheater Section of An Industrial Boiler Using a Real Gas Model

    Source: Journal of Fluids Engineering:;2020:;volume( 142 ):;issue: 007
    Author:
    Kanungo, Deepak Kumar
    ,
    Sahu, Kirti Chandra
    DOI: 10.1115/1.4046190
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Flow mal-distribution inside manifolds hampers the overall efficiency of processes in industries. In supercritical boilers, improper flow of steam inside the superheater (SH) section is a common cause of thermal accidents. However, carrying out a numerical simulation of supercritical fluids flowing inside manifolds is challenging as the ideal gas law does not describe the behavior of these fluids properly. In the present work, numerical simulation of the flow of supercritical steam inside the superheater section of an industrial boiler has been performed using a real gas model. The proposed real gas model is first validated with experimental data associated with the steam properties. Subsequently, the effect of different inlet and outlet arrangements on the flow mal-distribution of steam in the superheater section of the boiler is investigated numerically using the real gas model. A modified inlet and outlet arrangement of the superheater header is proposed which reduces the maximum value of flow mal-distribution in the header by 19.7% and total pressure drop in the domain by 17%. The effect of the Reynolds number on flow mal-distribution in the header arrangement is found to be negligible. The absolute value of the heat absorption by the superheater tubes increases with an increase in the value of the Reynolds number.
    • Download: (2.934Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Simulation of Steam Flow Inside the Superheater Section of An Industrial Boiler Using a Real Gas Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273338
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorKanungo, Deepak Kumar
    contributor authorSahu, Kirti Chandra
    date accessioned2022-02-04T14:16:51Z
    date available2022-02-04T14:16:51Z
    date copyright2020/03/09/
    date issued2020
    identifier issn0098-2202
    identifier otherfe_142_07_071201.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273338
    description abstractFlow mal-distribution inside manifolds hampers the overall efficiency of processes in industries. In supercritical boilers, improper flow of steam inside the superheater (SH) section is a common cause of thermal accidents. However, carrying out a numerical simulation of supercritical fluids flowing inside manifolds is challenging as the ideal gas law does not describe the behavior of these fluids properly. In the present work, numerical simulation of the flow of supercritical steam inside the superheater section of an industrial boiler has been performed using a real gas model. The proposed real gas model is first validated with experimental data associated with the steam properties. Subsequently, the effect of different inlet and outlet arrangements on the flow mal-distribution of steam in the superheater section of the boiler is investigated numerically using the real gas model. A modified inlet and outlet arrangement of the superheater header is proposed which reduces the maximum value of flow mal-distribution in the header by 19.7% and total pressure drop in the domain by 17%. The effect of the Reynolds number on flow mal-distribution in the header arrangement is found to be negligible. The absolute value of the heat absorption by the superheater tubes increases with an increase in the value of the Reynolds number.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNumerical Simulation of Steam Flow Inside the Superheater Section of An Industrial Boiler Using a Real Gas Model
    typeJournal Paper
    journal volume142
    journal issue7
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.4046190
    page71201
    treeJournal of Fluids Engineering:;2020:;volume( 142 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian