YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Model-Based Dynamic Calibration of a Multi-Actuator Gap Leveler for Heavy Plates

    Source: Journal of Manufacturing Science and Engineering:;2020:;volume( 142 ):;issue: 007
    Author:
    Brauneis, Robert
    ,
    Steinboeck, Andreas
    ,
    Jochum, Martin
    ,
    Kugi, Andreas
    DOI: 10.1115/1.4046830
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A novel method to calibrate the work rolls of a precision leveler for heavy plates is proposed. During the leveling process, a sequence of bending steps is imposed on the plate by the work rolls of the leveler to eliminate flatness defects. The respective positions of the rolls define the intensity of the consecutive bends. Any deviation from the desired roll position may result in a suboptimal leveling process. Thus, an exact control of the position of the work rolls is required. Due to backlash, wear, tolerances, and elastic deformation, the roll positions cannot be determined from nominal parameters and dimensions. Therefore, the machine has to be calibrated and properly adjusted to find suitable reference positions for control. During calibration, the structure is prestressed with a suitable test force and the signals of force and displacement sensors are recorded. As a result, reference points for future control inputs are obtained. A major drawback of a frequently used calibration method for levelers is that the work rolls of multi-actuator gap levelers cannot be properly calibrated. In practice, the work rolls are manually adjusted by the maintenance personnel of the machine. In this case, backlash may cause the loaded work rolls to deviate from their intended positions. Thus, a new method to calibrate the position of the individually actuated work rolls is developed and tested.
    • Download: (1.048Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Model-Based Dynamic Calibration of a Multi-Actuator Gap Leveler for Heavy Plates

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273324
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorBrauneis, Robert
    contributor authorSteinboeck, Andreas
    contributor authorJochum, Martin
    contributor authorKugi, Andreas
    date accessioned2022-02-04T14:16:29Z
    date available2022-02-04T14:16:29Z
    date copyright2020/05/08/
    date issued2020
    identifier issn1087-1357
    identifier othermanu_142_7_071007.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273324
    description abstractA novel method to calibrate the work rolls of a precision leveler for heavy plates is proposed. During the leveling process, a sequence of bending steps is imposed on the plate by the work rolls of the leveler to eliminate flatness defects. The respective positions of the rolls define the intensity of the consecutive bends. Any deviation from the desired roll position may result in a suboptimal leveling process. Thus, an exact control of the position of the work rolls is required. Due to backlash, wear, tolerances, and elastic deformation, the roll positions cannot be determined from nominal parameters and dimensions. Therefore, the machine has to be calibrated and properly adjusted to find suitable reference positions for control. During calibration, the structure is prestressed with a suitable test force and the signals of force and displacement sensors are recorded. As a result, reference points for future control inputs are obtained. A major drawback of a frequently used calibration method for levelers is that the work rolls of multi-actuator gap levelers cannot be properly calibrated. In practice, the work rolls are manually adjusted by the maintenance personnel of the machine. In this case, backlash may cause the loaded work rolls to deviate from their intended positions. Thus, a new method to calibrate the position of the individually actuated work rolls is developed and tested.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleModel-Based Dynamic Calibration of a Multi-Actuator Gap Leveler for Heavy Plates
    typeJournal Paper
    journal volume142
    journal issue7
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4046830
    page71007
    treeJournal of Manufacturing Science and Engineering:;2020:;volume( 142 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian