Effects of Wakes on Blade Endwall Heat Transfer in High Turbulence IntensitySource: Journal of Turbomachinery:;2020:;volume( 142 ):;issue: 002Author:Park, Sehjin
,
Sohn, Ho-Seong
,
Cho, Hyung Hee
,
Moon, Hee Koo
,
Han, Yang Seok
,
Ueda, Osamu
DOI: 10.1115/1.4045335Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: Detailed heat transfer measurements are necessary to protect the blades under harsh and complex flow conditions. Therefore, this study investigated the heat transfer characteristics on the blade endwall under flow conditions that simulate high turbulence intensity of the main flow and the generation of wakes by the trailing edge of the vane. The endwall heat transfer was measured using the naphthalene sublimation method. A turbulence generating grid was installed in a linear cascade to simulate the main flow with high turbulence intensity and a wake generator with a rod bundle was used to simulate the wakes generated by the trailing edge of the vane. In the case of high turbulence intensity without wakes, the main flow with high turbulence intensity (turbulence intensity, T.I = 7.5%) had little impact on the effect of the horseshoe vortex and passage vortex on the heat transfer characteristics. However, increasing turbulence caused the endwall heat transfer to decrease near the pressure side of the blade and increase near the suction side of the blade. On the other hand, the wakes resulted in heat transfer characteristics similar to high turbulence intensity but decreased heat transfer by horseshoe vortex and passage vortex. The endwall heat transfer distributions were similar regardless of the turbulence intensity (T.I = 1.2% and 7.5%) in the cases with wakes (rod passing Strouhal number, S = 0.3). The flow condition of S = 0.3 has a more significant influence on the endwall heat transfer than that of T.I = 7.5%.
|
Collections
Show full item record
contributor author | Park, Sehjin | |
contributor author | Sohn, Ho-Seong | |
contributor author | Cho, Hyung Hee | |
contributor author | Moon, Hee Koo | |
contributor author | Han, Yang Seok | |
contributor author | Ueda, Osamu | |
date accessioned | 2022-02-04T14:16:03Z | |
date available | 2022-02-04T14:16:03Z | |
date copyright | 2020/01/24/ | |
date issued | 2020 | |
identifier issn | 0889-504X | |
identifier other | turbo_142_2_021002.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4273308 | |
description abstract | Detailed heat transfer measurements are necessary to protect the blades under harsh and complex flow conditions. Therefore, this study investigated the heat transfer characteristics on the blade endwall under flow conditions that simulate high turbulence intensity of the main flow and the generation of wakes by the trailing edge of the vane. The endwall heat transfer was measured using the naphthalene sublimation method. A turbulence generating grid was installed in a linear cascade to simulate the main flow with high turbulence intensity and a wake generator with a rod bundle was used to simulate the wakes generated by the trailing edge of the vane. In the case of high turbulence intensity without wakes, the main flow with high turbulence intensity (turbulence intensity, T.I = 7.5%) had little impact on the effect of the horseshoe vortex and passage vortex on the heat transfer characteristics. However, increasing turbulence caused the endwall heat transfer to decrease near the pressure side of the blade and increase near the suction side of the blade. On the other hand, the wakes resulted in heat transfer characteristics similar to high turbulence intensity but decreased heat transfer by horseshoe vortex and passage vortex. The endwall heat transfer distributions were similar regardless of the turbulence intensity (T.I = 1.2% and 7.5%) in the cases with wakes (rod passing Strouhal number, S = 0.3). The flow condition of S = 0.3 has a more significant influence on the endwall heat transfer than that of T.I = 7.5%. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Effects of Wakes on Blade Endwall Heat Transfer in High Turbulence Intensity | |
type | Journal Paper | |
journal volume | 142 | |
journal issue | 2 | |
journal title | Journal of Turbomachinery | |
identifier doi | 10.1115/1.4045335 | |
page | 21002 | |
tree | Journal of Turbomachinery:;2020:;volume( 142 ):;issue: 002 | |
contenttype | Fulltext |