YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Using Machine Learning Tools to Predict Compressor Stall

    Source: Journal of Energy Resources Technology:;2020:;volume( 142 ):;issue: 007
    Author:
    Hipple, Samuel M.
    ,
    Bonilla-Alvarado, Harry
    ,
    Pezzini, Paolo
    ,
    Shadle, Lawrence
    ,
    Bryden, Kenneth M.
    DOI: 10.1115/1.4046458
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Clean energy has become an increasingly important consideration in today’s power systems. As the push for clean energy continues, many coal-fired power plants are being decommissioned in favor of renewable power sources such as wind and solar. However, the intermittent nature of renewables means that dynamic load following traditional power systems is crucial to grid stability. With high flexibility and fast response at a wide range of operating conditions, gas turbine systems are poised to become the main load following component in the power grid. Yet, rapid changes in load can lead to fluid flow instabilities in gas turbine power systems. These instabilities often lead to compressor surge and stall, which are some of the most critical problems facing the safe and efficient operation of compressors in turbomachinery today. Although the topic of compressor surge and stall has been extensively researched, no methods for early prediction have been proven effective. This study explores the utilization of machine learning tools to predict compressor stall. The long short-term memory (LSTM) model, a form of recurrent neural network (RNN), was trained using real compressor stall datasets from a 100 kW recuperated gas turbine power system designed for hybrid configuration. Two variations of the LSTM model, classification and regression, were tested to determine optimal performance. The regression scheme was determined to be the most accurate approach, and a tool for predicting compressor stall was developed using this configuration. Results show that the tool is capable of predicting stalls 5–20 ms before they occur. With a high-speed controller capable of 5 ms time-steps, mitigating action could be taken to prevent compressor stall before it occurs.
    • Download: (968.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Using Machine Learning Tools to Predict Compressor Stall

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273290
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorHipple, Samuel M.
    contributor authorBonilla-Alvarado, Harry
    contributor authorPezzini, Paolo
    contributor authorShadle, Lawrence
    contributor authorBryden, Kenneth M.
    date accessioned2022-02-04T14:15:30Z
    date available2022-02-04T14:15:30Z
    date copyright2020/04/08/
    date issued2020
    identifier issn0195-0738
    identifier otherjert_142_7_070915.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273290
    description abstractClean energy has become an increasingly important consideration in today’s power systems. As the push for clean energy continues, many coal-fired power plants are being decommissioned in favor of renewable power sources such as wind and solar. However, the intermittent nature of renewables means that dynamic load following traditional power systems is crucial to grid stability. With high flexibility and fast response at a wide range of operating conditions, gas turbine systems are poised to become the main load following component in the power grid. Yet, rapid changes in load can lead to fluid flow instabilities in gas turbine power systems. These instabilities often lead to compressor surge and stall, which are some of the most critical problems facing the safe and efficient operation of compressors in turbomachinery today. Although the topic of compressor surge and stall has been extensively researched, no methods for early prediction have been proven effective. This study explores the utilization of machine learning tools to predict compressor stall. The long short-term memory (LSTM) model, a form of recurrent neural network (RNN), was trained using real compressor stall datasets from a 100 kW recuperated gas turbine power system designed for hybrid configuration. Two variations of the LSTM model, classification and regression, were tested to determine optimal performance. The regression scheme was determined to be the most accurate approach, and a tool for predicting compressor stall was developed using this configuration. Results show that the tool is capable of predicting stalls 5–20 ms before they occur. With a high-speed controller capable of 5 ms time-steps, mitigating action could be taken to prevent compressor stall before it occurs.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleUsing Machine Learning Tools to Predict Compressor Stall
    typeJournal Paper
    journal volume142
    journal issue7
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4046458
    page70915
    treeJournal of Energy Resources Technology:;2020:;volume( 142 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian