YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Investigations on Crystallization Processes of Three Oxidic Gasifier Slag Systems

    Source: Journal of Energy Resources Technology:;2020:;volume( 142 ):;issue: 007
    Author:
    Schupsky, Jan Peter
    ,
    Guo, Muxing
    ,
    Blanpain, Bart
    ,
    Müller, Michael
    DOI: 10.1115/1.4046145
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In entrained flow gasifiers, the production of oxidic slag accompanies the gasification process. This slag forms a layer on the refractory walls, flows downwards gravitationally, and is collected in a water quench. Hence, the slag flow must be constant, since a slag blockage represents a worst-case-scenario. Crystallization of the slag increases slag viscosity, subsequently leading to a possible slag blockage. Therefore, crystallization processes in oxidic slags need to be understood and hence investigated. In this study, three artificial, coal ash related oxidic slag systems were analyzed on their crystallization behavior. Therefore, their melt behavior was investigated via hot-stage microscopy and differential thermal analysis (DTA). Additional thermochemical calculations were performed to predict crystallized phases. Subsequently, quenching experiments were conducted to generate supercooled crystallization in the slag samples. These samples were analyzed afterward via X-ray diffraction (XRD) and scanning electron microscopy (SEM), and the morphologies of crystals were characterized/described. In-situ observations on crystallization growth were performed by using a confocal laser scanning microscope (CLSM). Finally, crystallized phases were compared with results obtained from thermochemical calculations, and the impact of kinetics on the distributed phases was discussed. The knowledge on the crystallization behavior of various phases can be transferred to other slag systems and can improve general crystallization predictions made by thermochemical calculations.
    • Download: (739.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Investigations on Crystallization Processes of Three Oxidic Gasifier Slag Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273278
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorSchupsky, Jan Peter
    contributor authorGuo, Muxing
    contributor authorBlanpain, Bart
    contributor authorMüller, Michael
    date accessioned2022-02-04T14:15:10Z
    date available2022-02-04T14:15:10Z
    date copyright2020/02/28/
    date issued2020
    identifier issn0195-0738
    identifier otherjert_142_7_070904.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273278
    description abstractIn entrained flow gasifiers, the production of oxidic slag accompanies the gasification process. This slag forms a layer on the refractory walls, flows downwards gravitationally, and is collected in a water quench. Hence, the slag flow must be constant, since a slag blockage represents a worst-case-scenario. Crystallization of the slag increases slag viscosity, subsequently leading to a possible slag blockage. Therefore, crystallization processes in oxidic slags need to be understood and hence investigated. In this study, three artificial, coal ash related oxidic slag systems were analyzed on their crystallization behavior. Therefore, their melt behavior was investigated via hot-stage microscopy and differential thermal analysis (DTA). Additional thermochemical calculations were performed to predict crystallized phases. Subsequently, quenching experiments were conducted to generate supercooled crystallization in the slag samples. These samples were analyzed afterward via X-ray diffraction (XRD) and scanning electron microscopy (SEM), and the morphologies of crystals were characterized/described. In-situ observations on crystallization growth were performed by using a confocal laser scanning microscope (CLSM). Finally, crystallized phases were compared with results obtained from thermochemical calculations, and the impact of kinetics on the distributed phases was discussed. The knowledge on the crystallization behavior of various phases can be transferred to other slag systems and can improve general crystallization predictions made by thermochemical calculations.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleInvestigations on Crystallization Processes of Three Oxidic Gasifier Slag Systems
    typeJournal Paper
    journal volume142
    journal issue7
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4046145
    page70904
    treeJournal of Energy Resources Technology:;2020:;volume( 142 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian