YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Heat Transfer in Flat-Plate Boundary Layers: A Correlation for Laminar, Transitional, and Turbulent Flow

    Source: Journal of Heat Transfer:;2020:;volume( 142 ):;issue: 006
    Author:
    Lienhard, John H., V
    DOI: 10.1115/1.4046795
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The laminar and turbulent regimes of a boundary layer on a flat plate are often represented with separate correlations under the assumption of a distinct “transition Reynolds number.” Average heat coefficients are then calculated by integrating across the “transition point.” Experimental data do not show an abrupt transition, but rather an extended transition region in which turbulence develops. The transition region may be as long as the laminar region. Although this transitional behavior has been known for many decades, few correlations have incorporated it. One attempt was made by Stuart Churchill in 1976. Churchill, however, based his curve fit on some doubtful assumptions about the data sets. In this paper, we develop different approximations through a detailed consideration of multiple data sets for 0.7 ⩽ Pr ⩽ 257, 4000 ⩽ Rex ⩽ 4,300,000, and varying levels of freestream turbulence for smooth, sharp-edged plates at zero pressure gradient. The result we obtain is in good agreement with the available measurements and applies smoothly over the full range of Reynolds number for either a uniform wall temperature or a uniform heat flux boundary condition. Fully turbulent air data are correlated to ±11%. Like Churchill's result, this correlation should be matched to the estimated transition condition of any particular flow. We also review the laminar analytical solutions for a uniform wall heat flux, and point out limitations of the classical Colburn analogy.
    • Download: (2.613Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Heat Transfer in Flat-Plate Boundary Layers: A Correlation for Laminar, Transitional, and Turbulent Flow

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273238
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorLienhard, John H., V
    date accessioned2022-02-04T14:14:02Z
    date available2022-02-04T14:14:02Z
    date copyright2020/04/27/
    date issued2020
    identifier issn0022-1481
    identifier otherht_142_06_061805.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273238
    description abstractThe laminar and turbulent regimes of a boundary layer on a flat plate are often represented with separate correlations under the assumption of a distinct “transition Reynolds number.” Average heat coefficients are then calculated by integrating across the “transition point.” Experimental data do not show an abrupt transition, but rather an extended transition region in which turbulence develops. The transition region may be as long as the laminar region. Although this transitional behavior has been known for many decades, few correlations have incorporated it. One attempt was made by Stuart Churchill in 1976. Churchill, however, based his curve fit on some doubtful assumptions about the data sets. In this paper, we develop different approximations through a detailed consideration of multiple data sets for 0.7 ⩽ Pr ⩽ 257, 4000 ⩽ Rex ⩽ 4,300,000, and varying levels of freestream turbulence for smooth, sharp-edged plates at zero pressure gradient. The result we obtain is in good agreement with the available measurements and applies smoothly over the full range of Reynolds number for either a uniform wall temperature or a uniform heat flux boundary condition. Fully turbulent air data are correlated to ±11%. Like Churchill's result, this correlation should be matched to the estimated transition condition of any particular flow. We also review the laminar analytical solutions for a uniform wall heat flux, and point out limitations of the classical Colburn analogy.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleHeat Transfer in Flat-Plate Boundary Layers: A Correlation for Laminar, Transitional, and Turbulent Flow
    typeJournal Paper
    journal volume142
    journal issue6
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4046795
    page61805
    treeJournal of Heat Transfer:;2020:;volume( 142 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian