YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeling Interfacial Interactions and Turbulence in the Near-Wall Region of a Vertical Bubbly Boundary Layer

    Source: Journal of Fluids Engineering:;2020:;volume( 142 ):;issue: 006
    Author:
    Chahed, Jamel
    ,
    Masbernat, Lucien
    DOI: 10.1115/1.4045994
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A two-fluid model with second-order turbulence closure is used for the simulation of a turbulent bubbly boundary layer. The turbulence model is based on the decomposition of the Reynolds stress tensor in the liquid phase into two parts: a turbulent part and a pseudo-turbulent part. The reduction in second-order turbulence closure in the near-wall region is interpreted according to a modified wall logarithmic law. Numerical simulations of bubbly boundary layer developing on a vertical flat plate were performed in order to analyze the bubbles effect on the liquid turbulence structure and to evaluate the respective roles of turbulence and of interfacial forces in the near-wall distribution of the void fraction. The two-fluid model with the second-order turbulence closure succeeds in reproducing the diminution of the turbulent intensity observed in the near-wall region of bubbly boundary layer and the increase in turbulence outside the boundary layer. The analysis of the interfacial force in the near-wall zone has led to the development of relatively simple formulation of the lift-wall force in the logarithmic zone that depends on dimensionless distances to the wall. After appropriate adjustment, this formulation makes it possible to reproduce the shape of the near-wall void fraction peaking observed in bubbly boundary layer experiments.
    • Download: (1015.Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeling Interfacial Interactions and Turbulence in the Near-Wall Region of a Vertical Bubbly Boundary Layer

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273213
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorChahed, Jamel
    contributor authorMasbernat, Lucien
    date accessioned2022-02-04T14:13:20Z
    date available2022-02-04T14:13:20Z
    date copyright2020/03/05/
    date issued2020
    identifier issn0098-2202
    identifier otherfe_142_06_061405.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273213
    description abstractA two-fluid model with second-order turbulence closure is used for the simulation of a turbulent bubbly boundary layer. The turbulence model is based on the decomposition of the Reynolds stress tensor in the liquid phase into two parts: a turbulent part and a pseudo-turbulent part. The reduction in second-order turbulence closure in the near-wall region is interpreted according to a modified wall logarithmic law. Numerical simulations of bubbly boundary layer developing on a vertical flat plate were performed in order to analyze the bubbles effect on the liquid turbulence structure and to evaluate the respective roles of turbulence and of interfacial forces in the near-wall distribution of the void fraction. The two-fluid model with the second-order turbulence closure succeeds in reproducing the diminution of the turbulent intensity observed in the near-wall region of bubbly boundary layer and the increase in turbulence outside the boundary layer. The analysis of the interfacial force in the near-wall zone has led to the development of relatively simple formulation of the lift-wall force in the logarithmic zone that depends on dimensionless distances to the wall. After appropriate adjustment, this formulation makes it possible to reproduce the shape of the near-wall void fraction peaking observed in bubbly boundary layer experiments.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleModeling Interfacial Interactions and Turbulence in the Near-Wall Region of a Vertical Bubbly Boundary Layer
    typeJournal Paper
    journal volume142
    journal issue6
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.4045994
    page61405
    treeJournal of Fluids Engineering:;2020:;volume( 142 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian