YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Validating the Generality of a Closed-Form Equation for Soil Water Isotherm

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2021:;Volume ( 147 ):;issue: 012::page 04021138-1
    Author:
    Shengmin Luo
    ,
    Ning Lu
    DOI: 10.1061/(ASCE)GT.1943-5606.0002681
    Publisher: ASCE
    Abstract: Total soil water potential ψt is conventionally defined as the sum of matric potential ψm and osmotic potential ψo, i.e., ψt=ψm+ψo, when gravitational potential is ignored. Soil water isotherm (SWI) is the constitutive relationship between ψt and soil water content w, i.e., ψt(w)=ψm(w)+ψo, where ψm(w) is called soil water retention curve (SWRC) or soil water characteristic curve. SWI and SWRC are arguably the two most important soil constitutive relationships because they govern virtually all phenomena in soil such as flow, stress and deformation, and biological activities. A closed-form SWI, recast from a generalized SWRC equation for adsorption and capillarity, is experimentally validated for its generality in representing SWI. Adsorption isotherms of 49 soils, covering all spectrum of soil types with plasticity index up to 185% and specific surface area up to 600  m2/g, are used to validate the SWI equation. It is shown that the SWI equation can nearly perfectly represent the isotherms of these soils with almost all of the coefficients of determination R2≥0.99, validating the generality of the SWI equation. Comparative analysis is also conducted by using two existing SWI equations, namely, the Brunauer–Emmett–Teller (BET) equation and the augmented BET (A-BET) equation. It is demonstrated that the SWI equation is superior to the BET and A-BET equations in representing soil–water interactions by adsorption and capillarity, and in the full relative humidity range.
    • Download: (2.777Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Validating the Generality of a Closed-Form Equation for Soil Water Isotherm

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4272341
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorShengmin Luo
    contributor authorNing Lu
    date accessioned2022-02-01T21:56:54Z
    date available2022-02-01T21:56:54Z
    date issued12/1/2021
    identifier other%28ASCE%29GT.1943-5606.0002681.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4272341
    description abstractTotal soil water potential ψt is conventionally defined as the sum of matric potential ψm and osmotic potential ψo, i.e., ψt=ψm+ψo, when gravitational potential is ignored. Soil water isotherm (SWI) is the constitutive relationship between ψt and soil water content w, i.e., ψt(w)=ψm(w)+ψo, where ψm(w) is called soil water retention curve (SWRC) or soil water characteristic curve. SWI and SWRC are arguably the two most important soil constitutive relationships because they govern virtually all phenomena in soil such as flow, stress and deformation, and biological activities. A closed-form SWI, recast from a generalized SWRC equation for adsorption and capillarity, is experimentally validated for its generality in representing SWI. Adsorption isotherms of 49 soils, covering all spectrum of soil types with plasticity index up to 185% and specific surface area up to 600  m2/g, are used to validate the SWI equation. It is shown that the SWI equation can nearly perfectly represent the isotherms of these soils with almost all of the coefficients of determination R2≥0.99, validating the generality of the SWI equation. Comparative analysis is also conducted by using two existing SWI equations, namely, the Brunauer–Emmett–Teller (BET) equation and the augmented BET (A-BET) equation. It is demonstrated that the SWI equation is superior to the BET and A-BET equations in representing soil–water interactions by adsorption and capillarity, and in the full relative humidity range.
    publisherASCE
    titleValidating the Generality of a Closed-Form Equation for Soil Water Isotherm
    typeJournal Paper
    journal volume147
    journal issue12
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002681
    journal fristpage04021138-1
    journal lastpage04021138-16
    page16
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2021:;Volume ( 147 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian