YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Probabilistic Seismic Displacement Hazard Assessment of Earth Slopes Incorporating Spatially Random Soil Parameters

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2021:;Volume ( 147 ):;issue: 011::page 04021119-1
    Author:
    Mao-Xin Wang
    ,
    Dian-Qing Li
    ,
    Wenqi Du
    DOI: 10.1061/(ASCE)GT.1943-5606.0002671
    Publisher: ASCE
    Abstract: Permanent sliding displacement is a parameter that is used widely to evaluate the seismic performance of earthen slopes, and the inherent variability of soil strength parameters is considered simply using a logic tree in current practice. This study thus proposes a fully probabilistic framework to assess the seismic displacement hazard of earthen slopes by quantifying the inherent spatial variability of soil strength parameters. The framework incorporates the random field theory and a multiple quadratic response surface (MQRS) model into the fully probabilistic seismic sliding displacement hazard analysis. Random field theory was employed to characterize the spatial variability of soil parameters, and the MQRS model is proposed to estimate the yield acceleration (ky) of slopes in an efficient way. The performance of the proposed framework was demonstrated by slope examples. The results indicated that (1) the predicted ky values of the MQRS model are comparable with those computed by the traditional pseudostatic procedure, validating its accuracy in applications; (2) slope strength parameters exhibiting a weaker spatial variability (larger scale of fluctuation) yield a larger dispersion of ky and a larger displacement hazard; and (3) a larger displacement hazard is produced for soil parameters exhibiting weaker correlation between cohesion and friction angle. The proposed framework enables assessment of the probabilistic seismic displacement hazard of earthen slopes with proper consideration of the spatial variability of soil parameters.
    • Download: (2.448Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Probabilistic Seismic Displacement Hazard Assessment of Earth Slopes Incorporating Spatially Random Soil Parameters

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4272335
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorMao-Xin Wang
    contributor authorDian-Qing Li
    contributor authorWenqi Du
    date accessioned2022-02-01T21:56:44Z
    date available2022-02-01T21:56:44Z
    date issued11/1/2021
    identifier other%28ASCE%29GT.1943-5606.0002671.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4272335
    description abstractPermanent sliding displacement is a parameter that is used widely to evaluate the seismic performance of earthen slopes, and the inherent variability of soil strength parameters is considered simply using a logic tree in current practice. This study thus proposes a fully probabilistic framework to assess the seismic displacement hazard of earthen slopes by quantifying the inherent spatial variability of soil strength parameters. The framework incorporates the random field theory and a multiple quadratic response surface (MQRS) model into the fully probabilistic seismic sliding displacement hazard analysis. Random field theory was employed to characterize the spatial variability of soil parameters, and the MQRS model is proposed to estimate the yield acceleration (ky) of slopes in an efficient way. The performance of the proposed framework was demonstrated by slope examples. The results indicated that (1) the predicted ky values of the MQRS model are comparable with those computed by the traditional pseudostatic procedure, validating its accuracy in applications; (2) slope strength parameters exhibiting a weaker spatial variability (larger scale of fluctuation) yield a larger dispersion of ky and a larger displacement hazard; and (3) a larger displacement hazard is produced for soil parameters exhibiting weaker correlation between cohesion and friction angle. The proposed framework enables assessment of the probabilistic seismic displacement hazard of earthen slopes with proper consideration of the spatial variability of soil parameters.
    publisherASCE
    titleProbabilistic Seismic Displacement Hazard Assessment of Earth Slopes Incorporating Spatially Random Soil Parameters
    typeJournal Paper
    journal volume147
    journal issue11
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002671
    journal fristpage04021119-1
    journal lastpage04021119-12
    page12
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2021:;Volume ( 147 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian