YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    UAV-Enabled Subsurface Characterization Using Multichannel Analysis of Surface Waves

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2021:;Volume ( 147 ):;issue: 011::page 04021120-1
    Author:
    William W. Greenwood
    ,
    Dimitrios Zekkos
    ,
    Jerome P. Lynch
    DOI: 10.1061/(ASCE)GT.1943-5606.0002611
    Publisher: ASCE
    Abstract: The implementation of unmanned aerial vehicles (UAVs) in civil engineering has primarily focused on remote sensing using optical cameras, light detection and ranging (LiDAR), and communicating with other sensing systems such as wireless sensor networks. However, UAV-enabled methods for subsurface characterization are still at their naissance. In this study, a UAV was used to lift and drop a mass onto the ground surface. The mass’s impact on the ground was used as the impulsive source for multichannel analysis of surface waves (MASW) testing. For this implementation, a hexarotor UAV was modified to lift and drop 4–7 kg masses to generate Rayleigh surface waves. The frequency domain characteristics of the seismic waves generated by UAV-dropped masses were compared to conventional MASW testing using a sledgehammer. The MASW method using a UAV-deployed source developed herein was applied to a soil site and a solid waste site. It was demonstrated that the UAV-dropped mass can generate Rayleigh surface waves below 10 Hz more effectively than the sledgehammer and could therefore support shear wave velocity profiling to greater depths in the subsurface, possibly without the need for signal stacking. Recommendations for drop mass selection and a discussion of observations made by the authors are also provided. Contributions made in this study are intended to contribute toward remote, fully autonomous subsurface mapping coupled with image-based surface mapping that will be critical for remote site characterization in postearthquake geotechnical reconnaissance and will allow the acquisition of more extensive subsurface data than presently feasible.
    • Download: (1.756Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      UAV-Enabled Subsurface Characterization Using Multichannel Analysis of Surface Waves

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4272302
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorWilliam W. Greenwood
    contributor authorDimitrios Zekkos
    contributor authorJerome P. Lynch
    date accessioned2022-02-01T21:55:40Z
    date available2022-02-01T21:55:40Z
    date issued11/1/2021
    identifier other%28ASCE%29GT.1943-5606.0002611.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4272302
    description abstractThe implementation of unmanned aerial vehicles (UAVs) in civil engineering has primarily focused on remote sensing using optical cameras, light detection and ranging (LiDAR), and communicating with other sensing systems such as wireless sensor networks. However, UAV-enabled methods for subsurface characterization are still at their naissance. In this study, a UAV was used to lift and drop a mass onto the ground surface. The mass’s impact on the ground was used as the impulsive source for multichannel analysis of surface waves (MASW) testing. For this implementation, a hexarotor UAV was modified to lift and drop 4–7 kg masses to generate Rayleigh surface waves. The frequency domain characteristics of the seismic waves generated by UAV-dropped masses were compared to conventional MASW testing using a sledgehammer. The MASW method using a UAV-deployed source developed herein was applied to a soil site and a solid waste site. It was demonstrated that the UAV-dropped mass can generate Rayleigh surface waves below 10 Hz more effectively than the sledgehammer and could therefore support shear wave velocity profiling to greater depths in the subsurface, possibly without the need for signal stacking. Recommendations for drop mass selection and a discussion of observations made by the authors are also provided. Contributions made in this study are intended to contribute toward remote, fully autonomous subsurface mapping coupled with image-based surface mapping that will be critical for remote site characterization in postearthquake geotechnical reconnaissance and will allow the acquisition of more extensive subsurface data than presently feasible.
    publisherASCE
    titleUAV-Enabled Subsurface Characterization Using Multichannel Analysis of Surface Waves
    typeJournal Paper
    journal volume147
    journal issue11
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002611
    journal fristpage04021120-1
    journal lastpage04021120-14
    page14
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2021:;Volume ( 147 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian