YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Total Stress Path and Gas Volume Change on Undrained Shear Strength of Gassy Clay

    Source: International Journal of Geomechanics:;2021:;Volume ( 021 ):;issue: 011::page 04021218-1
    Author:
    Zhiwei Gao
    ,
    Hongjian Cai
    DOI: 10.1061/(ASCE)GM.1943-5622.0002198
    Publisher: ASCE
    Abstract: Clay with free gas bubbles can be frequently encountered in the seabed. Gassy clay is an unsaturated soil, but its mechanical behavior cannot be described using conventional unsaturated soil mechanics because it has a composite internal structure with a saturated soil matrix and gas bubbles. The gas bubbles can have either a detrimental or beneficial effect on the undrained shear strength of clay. New lower and upper bounds for the undrained shear strength of gassy clay are derived by considering the effect of total stress path and plastic hardening of the saturated soil matrix. For the upper bound, it is assumed that there is only bubble flooding, and the shear strength of an unsaturated soil sample is the same as that of the saturated soil matrix. Bubble flooding makes the saturated soil matrix partially drained and increases the undrained shear strength. The amount of bubble flooding is calculated using the modified Cam-Clay model and Boyle's law for ideal gas. The lower bound is derived based on the assumption that the entire soil fails without bubble flooding and the gas cavity size evolves due to plastic hardening of the saturated soil matrix. Compared with Wheeler's upper and lower bounds that do not consider plastic hardening of the saturated soil matrix, the new theoretical results give a better prediction of the undrained shear strength of gassy clays, especially for the upper bound. Implications for constitutive modeling of gassy clay are discussed based on the new research outcomes.
    • Download: (1.108Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Total Stress Path and Gas Volume Change on Undrained Shear Strength of Gassy Clay

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4272266
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorZhiwei Gao
    contributor authorHongjian Cai
    date accessioned2022-02-01T21:54:28Z
    date available2022-02-01T21:54:28Z
    date issued11/1/2021
    identifier other%28ASCE%29GM.1943-5622.0002198.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4272266
    description abstractClay with free gas bubbles can be frequently encountered in the seabed. Gassy clay is an unsaturated soil, but its mechanical behavior cannot be described using conventional unsaturated soil mechanics because it has a composite internal structure with a saturated soil matrix and gas bubbles. The gas bubbles can have either a detrimental or beneficial effect on the undrained shear strength of clay. New lower and upper bounds for the undrained shear strength of gassy clay are derived by considering the effect of total stress path and plastic hardening of the saturated soil matrix. For the upper bound, it is assumed that there is only bubble flooding, and the shear strength of an unsaturated soil sample is the same as that of the saturated soil matrix. Bubble flooding makes the saturated soil matrix partially drained and increases the undrained shear strength. The amount of bubble flooding is calculated using the modified Cam-Clay model and Boyle's law for ideal gas. The lower bound is derived based on the assumption that the entire soil fails without bubble flooding and the gas cavity size evolves due to plastic hardening of the saturated soil matrix. Compared with Wheeler's upper and lower bounds that do not consider plastic hardening of the saturated soil matrix, the new theoretical results give a better prediction of the undrained shear strength of gassy clays, especially for the upper bound. Implications for constitutive modeling of gassy clay are discussed based on the new research outcomes.
    publisherASCE
    titleEffect of Total Stress Path and Gas Volume Change on Undrained Shear Strength of Gassy Clay
    typeJournal Paper
    journal volume21
    journal issue11
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0002198
    journal fristpage04021218-1
    journal lastpage04021218-9
    page9
    treeInternational Journal of Geomechanics:;2021:;Volume ( 021 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian