Show simple item record

contributor authorZhiwei Gao
contributor authorHongjian Cai
date accessioned2022-02-01T21:54:28Z
date available2022-02-01T21:54:28Z
date issued11/1/2021
identifier other%28ASCE%29GM.1943-5622.0002198.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4272266
description abstractClay with free gas bubbles can be frequently encountered in the seabed. Gassy clay is an unsaturated soil, but its mechanical behavior cannot be described using conventional unsaturated soil mechanics because it has a composite internal structure with a saturated soil matrix and gas bubbles. The gas bubbles can have either a detrimental or beneficial effect on the undrained shear strength of clay. New lower and upper bounds for the undrained shear strength of gassy clay are derived by considering the effect of total stress path and plastic hardening of the saturated soil matrix. For the upper bound, it is assumed that there is only bubble flooding, and the shear strength of an unsaturated soil sample is the same as that of the saturated soil matrix. Bubble flooding makes the saturated soil matrix partially drained and increases the undrained shear strength. The amount of bubble flooding is calculated using the modified Cam-Clay model and Boyle's law for ideal gas. The lower bound is derived based on the assumption that the entire soil fails without bubble flooding and the gas cavity size evolves due to plastic hardening of the saturated soil matrix. Compared with Wheeler's upper and lower bounds that do not consider plastic hardening of the saturated soil matrix, the new theoretical results give a better prediction of the undrained shear strength of gassy clays, especially for the upper bound. Implications for constitutive modeling of gassy clay are discussed based on the new research outcomes.
publisherASCE
titleEffect of Total Stress Path and Gas Volume Change on Undrained Shear Strength of Gassy Clay
typeJournal Paper
journal volume21
journal issue11
journal titleInternational Journal of Geomechanics
identifier doi10.1061/(ASCE)GM.1943-5622.0002198
journal fristpage04021218-1
journal lastpage04021218-9
page9
treeInternational Journal of Geomechanics:;2021:;Volume ( 021 ):;issue: 011
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record