YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Improved Component-Level Deterioration Modeling and Capacity Estimation for Seismic Fragility Assessment of Highway Bridges

    Source: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2021:;Volume ( 007 ):;issue: 004::page 04021053-1
    Author:
    Shivang Shekhar
    ,
    Jayadipta Ghosh
    DOI: 10.1061/AJRUA6.0001154
    Publisher: ASCE
    Abstract: This paper presents a novel vector-based seismic vulnerability assessment methodology for deteriorating highway bridges by uniquely accounting for realistic deterioration of key structural components. The proposed framework offers notable enhancement over the state-of-the-art procedures that assume simplified and often unrealistic deterioration models of bridge components and promote inflexible unidimensional fragility curves for vulnerability assessment of aging bridge structures. Based on available data from past field investigation reports and laboratory experiments, this study proposes improved deterioration models that specifically encompass pitting corrosion of embedded reinforcing bars in columns under chloride attacks and necking failure of bearing anchor bolts. These deterioration models are incorporated within the finite element modeling of aging bridge components to develop multidimensional seismic demand estimates, capacity limit states, and parameterized seismic fragility functions using modern statistical learning algorithms. As a case study example, such vector-based fragility functions conditioned on a multitude of parameters are developed for the popular multi-span continuous steel girder highway bridge class of Central and Southeastern US. Twofold findings from the case -study reveal (1) the criticality of incorporating realistic deterioration modeling of critical bridge components for seismic vulnerability assessment, and (2) convenient utilization of parameterized seismic fragility functions by stakeholders and bridge engineers for prompt retrofit and rehabilitation decisions of aging highway bridges within the transportation infrastructure. Demonstrative examples reveal 25% and 10% overestimation of complete damage state median fragility for 75 year old bridge column and system, respectively, using the conventional modeling techniques when compared to the proposed improved deterioration models.
    • Download: (2.654Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Improved Component-Level Deterioration Modeling and Capacity Estimation for Seismic Fragility Assessment of Highway Bridges

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4271768
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering

    Show full item record

    contributor authorShivang Shekhar
    contributor authorJayadipta Ghosh
    date accessioned2022-02-01T21:38:59Z
    date available2022-02-01T21:38:59Z
    date issued12/1/2021
    identifier otherAJRUA6.0001154.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4271768
    description abstractThis paper presents a novel vector-based seismic vulnerability assessment methodology for deteriorating highway bridges by uniquely accounting for realistic deterioration of key structural components. The proposed framework offers notable enhancement over the state-of-the-art procedures that assume simplified and often unrealistic deterioration models of bridge components and promote inflexible unidimensional fragility curves for vulnerability assessment of aging bridge structures. Based on available data from past field investigation reports and laboratory experiments, this study proposes improved deterioration models that specifically encompass pitting corrosion of embedded reinforcing bars in columns under chloride attacks and necking failure of bearing anchor bolts. These deterioration models are incorporated within the finite element modeling of aging bridge components to develop multidimensional seismic demand estimates, capacity limit states, and parameterized seismic fragility functions using modern statistical learning algorithms. As a case study example, such vector-based fragility functions conditioned on a multitude of parameters are developed for the popular multi-span continuous steel girder highway bridge class of Central and Southeastern US. Twofold findings from the case -study reveal (1) the criticality of incorporating realistic deterioration modeling of critical bridge components for seismic vulnerability assessment, and (2) convenient utilization of parameterized seismic fragility functions by stakeholders and bridge engineers for prompt retrofit and rehabilitation decisions of aging highway bridges within the transportation infrastructure. Demonstrative examples reveal 25% and 10% overestimation of complete damage state median fragility for 75 year old bridge column and system, respectively, using the conventional modeling techniques when compared to the proposed improved deterioration models.
    publisherASCE
    titleImproved Component-Level Deterioration Modeling and Capacity Estimation for Seismic Fragility Assessment of Highway Bridges
    typeJournal Paper
    journal volume7
    journal issue4
    journal titleASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    identifier doi10.1061/AJRUA6.0001154
    journal fristpage04021053-1
    journal lastpage04021053-23
    page23
    treeASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2021:;Volume ( 007 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian