YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Adaptive Hermite Distribution Model with Probability-Weighted Moments for Seismic Reliability Analysis of Nonlinear Structures

    Source: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2021:;Volume ( 007 ):;issue: 004::page 04021042-1
    Author:
    Jun Xu
    ,
    Chen Ding
    DOI: 10.1061/AJRUA6.0001145
    Publisher: ASCE
    Abstract: In this paper, an adaptive Hermite distribution model with probability-weighted moments (PWMs) is proposed for evaluating the extreme-value distribution (EVD) of response, which serves as the basis of seismic reliability analysis of complex nonlinear structures under random seismic excitations. From the perspective of EVD, the problem formulation is first introduced. Then, an adaptive distribution model, named as the adaptive Hermite polynomial normal transformation model (A-HPNT), is established to estimate the EVD. The undetermined coefficients of A-HPNT are specified via the PWMs matching technique, in which only linear systems of equations need to be solved. To optimally determine the degree for A-HPNT, a two-step criterion is effectively established accordingly. An efficient high-dimensional sampling technique is introduced for generating samples of extreme value, estimating both the PWMs and statistical moments of EVD. When the entire distribution of EVD is recovered, one can compute the failure probability and reliability index via an integral over the EVD. Two numerical examples, a 10-story nonlinear shear frame structure and a practical 13-story reinforced concrete frame-shear wall structure driven by random seismic excitations, are presented to verify the efficacy of the proposed method for seismic reliability evaluation of complex nonlinear structures.
    • Download: (2.046Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Adaptive Hermite Distribution Model with Probability-Weighted Moments for Seismic Reliability Analysis of Nonlinear Structures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4271764
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering

    Show full item record

    contributor authorJun Xu
    contributor authorChen Ding
    date accessioned2022-02-01T21:38:47Z
    date available2022-02-01T21:38:47Z
    date issued12/1/2021
    identifier otherAJRUA6.0001145.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4271764
    description abstractIn this paper, an adaptive Hermite distribution model with probability-weighted moments (PWMs) is proposed for evaluating the extreme-value distribution (EVD) of response, which serves as the basis of seismic reliability analysis of complex nonlinear structures under random seismic excitations. From the perspective of EVD, the problem formulation is first introduced. Then, an adaptive distribution model, named as the adaptive Hermite polynomial normal transformation model (A-HPNT), is established to estimate the EVD. The undetermined coefficients of A-HPNT are specified via the PWMs matching technique, in which only linear systems of equations need to be solved. To optimally determine the degree for A-HPNT, a two-step criterion is effectively established accordingly. An efficient high-dimensional sampling technique is introduced for generating samples of extreme value, estimating both the PWMs and statistical moments of EVD. When the entire distribution of EVD is recovered, one can compute the failure probability and reliability index via an integral over the EVD. Two numerical examples, a 10-story nonlinear shear frame structure and a practical 13-story reinforced concrete frame-shear wall structure driven by random seismic excitations, are presented to verify the efficacy of the proposed method for seismic reliability evaluation of complex nonlinear structures.
    publisherASCE
    titleAdaptive Hermite Distribution Model with Probability-Weighted Moments for Seismic Reliability Analysis of Nonlinear Structures
    typeJournal Paper
    journal volume7
    journal issue4
    journal titleASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    identifier doi10.1061/AJRUA6.0001145
    journal fristpage04021042-1
    journal lastpage04021042-15
    page15
    treeASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2021:;Volume ( 007 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian