YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Time–Frequency Filter for Computation of Surface Acceleration for Liquefiable Sites: Equivalent Linear Stockwell Analysis Method

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2021:;Volume ( 147 ):;issue: 008::page 04021070-1
    Author:
    Maxim D. L. Millen
    ,
    Antonio Viana da Fonseca
    ,
    Carlos M. Azeredo
    DOI: 10.1061/(ASCE)GT.1943-5606.0002581
    Publisher: ASCE
    Abstract: This paper presents a novel method for performing equivalent linear analysis that allows for a variation of the stiffness and equivalent viscous damping properties throughout the duration of shaking. The ability to change the dynamic properties throughout the analysis comes from the conversion of the input ground motion into the time-frequency domain using the Stockwell transform whereby different transfer functions can be applied at different times before converting back to the time domain. The equivalent linear Stockwell analysis (ELSA) method provides a fully decoupled approach to modeling the dynamic site response of liquefiable soil deposits that can account for changes in properties due to strain effects and the build-up of excess pore pressure. The simplicity of the method means that only a limited number of dynamic soil properties are required, the same as those used in an equivalent linear analysis, as well as an estimation of the build-up of excess pore pressure and the relative density of the soil. While there are drawbacks of decoupling the estimation of the build-up of excess pore pressure from the dynamic response, this approach means that the effects of liquefaction on ground shaking can be independently assessed using different models for estimating pore pressure. Furthermore, the influence of liquefaction mitigation interventions, or the presence of a building, can present significant modeling challenges for fully-coupled or loosely coupled approaches, whereas they can easily be assessed using simple decoupled tools. Changing the dynamic properties throughout time using the ELSA method provides a rational way to correct equivalent linear analyses for the known drawback of using the same properties throughout the whole duration. Validation studies are presented of the ELSA method against field downhole recordings from the Wildlife Array and fully-coupled nonlinear effective stress analyses.
    • Download: (2.722Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Time–Frequency Filter for Computation of Surface Acceleration for Liquefiable Sites: Equivalent Linear Stockwell Analysis Method

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4271550
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorMaxim D. L. Millen
    contributor authorAntonio Viana da Fonseca
    contributor authorCarlos M. Azeredo
    date accessioned2022-02-01T00:30:44Z
    date available2022-02-01T00:30:44Z
    date issued8/1/2021
    identifier other%28ASCE%29GT.1943-5606.0002581.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4271550
    description abstractThis paper presents a novel method for performing equivalent linear analysis that allows for a variation of the stiffness and equivalent viscous damping properties throughout the duration of shaking. The ability to change the dynamic properties throughout the analysis comes from the conversion of the input ground motion into the time-frequency domain using the Stockwell transform whereby different transfer functions can be applied at different times before converting back to the time domain. The equivalent linear Stockwell analysis (ELSA) method provides a fully decoupled approach to modeling the dynamic site response of liquefiable soil deposits that can account for changes in properties due to strain effects and the build-up of excess pore pressure. The simplicity of the method means that only a limited number of dynamic soil properties are required, the same as those used in an equivalent linear analysis, as well as an estimation of the build-up of excess pore pressure and the relative density of the soil. While there are drawbacks of decoupling the estimation of the build-up of excess pore pressure from the dynamic response, this approach means that the effects of liquefaction on ground shaking can be independently assessed using different models for estimating pore pressure. Furthermore, the influence of liquefaction mitigation interventions, or the presence of a building, can present significant modeling challenges for fully-coupled or loosely coupled approaches, whereas they can easily be assessed using simple decoupled tools. Changing the dynamic properties throughout time using the ELSA method provides a rational way to correct equivalent linear analyses for the known drawback of using the same properties throughout the whole duration. Validation studies are presented of the ELSA method against field downhole recordings from the Wildlife Array and fully-coupled nonlinear effective stress analyses.
    publisherASCE
    titleTime–Frequency Filter for Computation of Surface Acceleration for Liquefiable Sites: Equivalent Linear Stockwell Analysis Method
    typeJournal Paper
    journal volume147
    journal issue8
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002581
    journal fristpage04021070-1
    journal lastpage04021070-16
    page16
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2021:;Volume ( 147 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian