YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Liquefaction Potential and Effective Stress of Fiber-Reinforced Sand during Undrained Cyclic Loading

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2021:;Volume ( 147 ):;issue: 007::page 04021042-1
    Author:
    Xidong Zhang
    ,
    Adrian R. Russell
    DOI: 10.1061/(ASCE)GT.1943-5606.0002530
    Publisher: ASCE
    Abstract: Adding fiber reinforcement to a loose sand alters the effective stress of the sand skeleton. The rate of pore water pressure build-up when undrained is reduced, and liquefaction may be delayed or prevented. Here the results of cyclic triaxial tests are presented that show this benefit. They are interpretated so the load carried by the fibers is separated from that carried by the pore water and sand skeleton. A newly defined pore pressure ratio demonstrates when the pore water pressure build-up is insufficient for liquefaction to occur. The rule of mixtures is used, along with separate constitutive laws for the sand skeleton and fibers. Account is given to the anisotropic fiber orientation distribution, by which the fibers affect the sand skeleton differently during compression and extension cycles. It is found that the stress state of the sand skeleton remains bounded by critical state strengths after many cycles, as is the case for unreinforced sands. Not correctly determining the load carried by the sand skeleton and adopting the conventional rather than a new pore pressure ratio makes the fiber reinforcement technology appear less effective at suppressing liquefaction than it actually is. This may, unfairly, hinder its uptake in industry.
    • Download: (4.238Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Liquefaction Potential and Effective Stress of Fiber-Reinforced Sand during Undrained Cyclic Loading

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4271517
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorXidong Zhang
    contributor authorAdrian R. Russell
    date accessioned2022-02-01T00:29:35Z
    date available2022-02-01T00:29:35Z
    date issued7/1/2021
    identifier other%28ASCE%29GT.1943-5606.0002530.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4271517
    description abstractAdding fiber reinforcement to a loose sand alters the effective stress of the sand skeleton. The rate of pore water pressure build-up when undrained is reduced, and liquefaction may be delayed or prevented. Here the results of cyclic triaxial tests are presented that show this benefit. They are interpretated so the load carried by the fibers is separated from that carried by the pore water and sand skeleton. A newly defined pore pressure ratio demonstrates when the pore water pressure build-up is insufficient for liquefaction to occur. The rule of mixtures is used, along with separate constitutive laws for the sand skeleton and fibers. Account is given to the anisotropic fiber orientation distribution, by which the fibers affect the sand skeleton differently during compression and extension cycles. It is found that the stress state of the sand skeleton remains bounded by critical state strengths after many cycles, as is the case for unreinforced sands. Not correctly determining the load carried by the sand skeleton and adopting the conventional rather than a new pore pressure ratio makes the fiber reinforcement technology appear less effective at suppressing liquefaction than it actually is. This may, unfairly, hinder its uptake in industry.
    publisherASCE
    titleLiquefaction Potential and Effective Stress of Fiber-Reinforced Sand during Undrained Cyclic Loading
    typeJournal Paper
    journal volume147
    journal issue7
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002530
    journal fristpage04021042-1
    journal lastpage04021042-16
    page16
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2021:;Volume ( 147 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian