YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Influence of Fabric on Stress Distribution in Gap-Graded Soil

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2021:;Volume ( 147 ):;issue: 005::page 04021016-1
    Author:
    Adnan Sufian
    ,
    Marion Artigaut
    ,
    Thomas Shire
    ,
    Catherine O’Sullivan
    DOI: 10.1061/(ASCE)GT.1943-5606.0002487
    Publisher: ASCE
    Abstract: The combined influence of density and stress-induced fabric anisotropy on the nature of stress transmission in gap-graded soils with cohesionless fines has been explored using the discrete element method (DEM). Various particle size ratios and fines contents were considered in simulations of constant mean stress triaxial compression. Analysis of the available particle-scale data focused on understanding how stress was distributed among and between the finer and coarser particles. While the study confirms that stress is transferred from the coarser to the finer fraction with increasing fines content, the concept of a threshold fines content at which there is a definitive transition in the nature of stress transmission is not supported. Rather, there is a gradual evolution of the distribution of stresses between the two size fractions with increasing fines content, and the relationship between fines content and stress in the finer fraction depends on the size ratio, density, and fabric anisotropy. For the denser samples considered, the stress transmitted by the finer fraction systematically reduced during shearing. An alternate definition of granular void ratio is introduced, which accounts for the nonactive fine and coarse particles and is formulated in a consistent manner to capture both the intergranular and interfine void ratios commonly found in the literature, along with the equivalent granular void ratio. The anisotropy of the network of contacts formed by the interactions of coarse particles was observed to be the dominant contributor to fabric anisotropy.
    • Download: (2.285Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Influence of Fabric on Stress Distribution in Gap-Graded Soil

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4271482
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorAdnan Sufian
    contributor authorMarion Artigaut
    contributor authorThomas Shire
    contributor authorCatherine O’Sullivan
    date accessioned2022-02-01T00:28:17Z
    date available2022-02-01T00:28:17Z
    date issued5/1/2021
    identifier other%28ASCE%29GT.1943-5606.0002487.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4271482
    description abstractThe combined influence of density and stress-induced fabric anisotropy on the nature of stress transmission in gap-graded soils with cohesionless fines has been explored using the discrete element method (DEM). Various particle size ratios and fines contents were considered in simulations of constant mean stress triaxial compression. Analysis of the available particle-scale data focused on understanding how stress was distributed among and between the finer and coarser particles. While the study confirms that stress is transferred from the coarser to the finer fraction with increasing fines content, the concept of a threshold fines content at which there is a definitive transition in the nature of stress transmission is not supported. Rather, there is a gradual evolution of the distribution of stresses between the two size fractions with increasing fines content, and the relationship between fines content and stress in the finer fraction depends on the size ratio, density, and fabric anisotropy. For the denser samples considered, the stress transmitted by the finer fraction systematically reduced during shearing. An alternate definition of granular void ratio is introduced, which accounts for the nonactive fine and coarse particles and is formulated in a consistent manner to capture both the intergranular and interfine void ratios commonly found in the literature, along with the equivalent granular void ratio. The anisotropy of the network of contacts formed by the interactions of coarse particles was observed to be the dominant contributor to fabric anisotropy.
    publisherASCE
    titleInfluence of Fabric on Stress Distribution in Gap-Graded Soil
    typeJournal Paper
    journal volume147
    journal issue5
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002487
    journal fristpage04021016-1
    journal lastpage04021016-14
    page14
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2021:;Volume ( 147 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian