YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Investigations of the Stress Path Dependence of Weakly Cemented Sand

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2021:;Volume ( 147 ):;issue: 004::page 04021007-1
    Author:
    Ramesh Kannan Kandasami
    ,
    Saurabh Singh
    ,
    Tejas Gorur Murthy
    DOI: 10.1061/(ASCE)GT.1943-5606.0002475
    Publisher: ASCE
    Abstract: Cohesion between grains in a geological system is perhaps the simplest and ideal representation of a range of material systems including soft rocks, structured soils, mudstones, cemented sands, powder compacts, and carbonate sands. This presence of inter granular cohesion is known to alter the ensemble mechanical response when subjected to varied boundary conditions. In this study, a hollow cylinder apparatus is used to investigate the mechanical behavior of weakly cemented sand ensembles by mapping the state boundary surfaces including the failure surface (locus of peak stress state) and the state of plastic flow (locus of final stress state). When these materials are sheared, the plastic deformation accumulates due to breakdown of cohesion between the grains, which introduces a lag in occurrence of peak stress ratio and maximum dilatancy, unlike a typical frictional granular material. This breakdown of cementation is affected by changes in the initial mean effective stress, initial reconstitution density, and intermediate principal stress ratio (stress path on the octahedral plane). The final state locus, emergent at large strains, was found to depend on the initial reconstitution density. Further, the parameters are extracted for calibration and prediction exercise using an elastic plastic constitutive model. In this and several other models, the effect of cementation is considered as an additional confinement to the ensemble. Such an approach predicts the stress state precisely but does not predict the volumetric response accurately, especially at large strains.
    • Download: (2.873Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Investigations of the Stress Path Dependence of Weakly Cemented Sand

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4271471
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorRamesh Kannan Kandasami
    contributor authorSaurabh Singh
    contributor authorTejas Gorur Murthy
    date accessioned2022-02-01T00:27:50Z
    date available2022-02-01T00:27:50Z
    date issued4/1/2021
    identifier other%28ASCE%29GT.1943-5606.0002475.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4271471
    description abstractCohesion between grains in a geological system is perhaps the simplest and ideal representation of a range of material systems including soft rocks, structured soils, mudstones, cemented sands, powder compacts, and carbonate sands. This presence of inter granular cohesion is known to alter the ensemble mechanical response when subjected to varied boundary conditions. In this study, a hollow cylinder apparatus is used to investigate the mechanical behavior of weakly cemented sand ensembles by mapping the state boundary surfaces including the failure surface (locus of peak stress state) and the state of plastic flow (locus of final stress state). When these materials are sheared, the plastic deformation accumulates due to breakdown of cohesion between the grains, which introduces a lag in occurrence of peak stress ratio and maximum dilatancy, unlike a typical frictional granular material. This breakdown of cementation is affected by changes in the initial mean effective stress, initial reconstitution density, and intermediate principal stress ratio (stress path on the octahedral plane). The final state locus, emergent at large strains, was found to depend on the initial reconstitution density. Further, the parameters are extracted for calibration and prediction exercise using an elastic plastic constitutive model. In this and several other models, the effect of cementation is considered as an additional confinement to the ensemble. Such an approach predicts the stress state precisely but does not predict the volumetric response accurately, especially at large strains.
    publisherASCE
    titleExperimental Investigations of the Stress Path Dependence of Weakly Cemented Sand
    typeJournal Paper
    journal volume147
    journal issue4
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002475
    journal fristpage04021007-1
    journal lastpage04021007-12
    page12
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2021:;Volume ( 147 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian