YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Monitoring and Modeling Tidally Induced Pore-Pressure Oscillations in the Soil of St. Mark’s Square in Venice, Italy

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2021:;Volume ( 147 ):;issue: 005::page 05021001-1
    Author:
    Francesca Ceccato
    ,
    Paolo Simonini
    ,
    Francesco Zarattini
    DOI: 10.1061/(ASCE)GT.1943-5606.0002474
    Publisher: ASCE
    Abstract: Sea level rise and high tide events are threatening many coastal cities, which require adequate and sustainable protection measures. The historic city centre of Venice (Italy) is often flooded during very high tide events, especially the area of St. Mark’s Island, which is at the lowest elevation among all the islands forming the city. To design cost-effective protection interventions to safeguard the historical heritage, a deep understanding of flooding mechanisms and the relationship between groundwater pressure and tidal oscillations is necessary. Geotechnical survey and analyses play an important role in this process. This paper presents the results of a recent monitoring campaign carried out in St. Mark’s Island. A simplified one-dimensional analytical model was derived for saturated conditions to understand the key parameters that govern tidal induced pressure oscillations in soil (material properties, geometrical features, and wave properties). Additional features, such as partially saturated soil conditions and two-dimensional effects, were investigated numerically. Results showed that significant pressure oscillations occur in the subsoil, which should not be neglected when considering the stability of horizontal architectural structures, such as the historical mosaics and paving. However, seepage flow rate is small, and thus its impact on the drainage system is limited in terms of water discharge.
    • Download: (10.26Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Monitoring and Modeling Tidally Induced Pore-Pressure Oscillations in the Soil of St. Mark’s Square in Venice, Italy

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4271469
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorFrancesca Ceccato
    contributor authorPaolo Simonini
    contributor authorFrancesco Zarattini
    date accessioned2022-02-01T00:27:47Z
    date available2022-02-01T00:27:47Z
    date issued5/1/2021
    identifier other%28ASCE%29GT.1943-5606.0002474.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4271469
    description abstractSea level rise and high tide events are threatening many coastal cities, which require adequate and sustainable protection measures. The historic city centre of Venice (Italy) is often flooded during very high tide events, especially the area of St. Mark’s Island, which is at the lowest elevation among all the islands forming the city. To design cost-effective protection interventions to safeguard the historical heritage, a deep understanding of flooding mechanisms and the relationship between groundwater pressure and tidal oscillations is necessary. Geotechnical survey and analyses play an important role in this process. This paper presents the results of a recent monitoring campaign carried out in St. Mark’s Island. A simplified one-dimensional analytical model was derived for saturated conditions to understand the key parameters that govern tidal induced pressure oscillations in soil (material properties, geometrical features, and wave properties). Additional features, such as partially saturated soil conditions and two-dimensional effects, were investigated numerically. Results showed that significant pressure oscillations occur in the subsoil, which should not be neglected when considering the stability of horizontal architectural structures, such as the historical mosaics and paving. However, seepage flow rate is small, and thus its impact on the drainage system is limited in terms of water discharge.
    publisherASCE
    titleMonitoring and Modeling Tidally Induced Pore-Pressure Oscillations in the Soil of St. Mark’s Square in Venice, Italy
    typeJournal Paper
    journal volume147
    journal issue5
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002474
    journal fristpage05021001-1
    journal lastpage05021001-14
    page14
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2021:;Volume ( 147 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian