YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Stress Level on Response of Model Monopile to Cyclic Lateral Loading in Sand

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2021:;Volume ( 147 ):;issue: 003::page 04021002-1
    Author:
    I. A. Richards
    ,
    M. F. Bransby
    ,
    B. W. Byrne
    ,
    C. Gaudin
    ,
    G. T. Houlsby
    DOI: 10.1061/(ASCE)GT.1943-5606.0002447
    Publisher: ASCE
    Abstract: Monopile foundations supporting offshore wind turbines are exposed to cyclic lateral loading, which can cause accumulated pile displacement or rotation and evolution of the dynamic response. To inform the development of improved design methods, the monopile’s response to cyclic lateral loading has been explored through small-scale physical modeling at 1g and in the centrifuge, as well as at large-scale in the field. There are advantages and disadvantages to each physical modeling technique, and the response may be most efficiently explored through a combination of modeling techniques. However, stress levels vary significantly between these techniques, and only centrifuge testing can simulate full-scale stress levels. This paper explores the effect of stress level on the response of a monopile foundation in dry sand to monotonic, unidirectional cyclic and multidirectional cyclic lateral loading with small-scale tests at 1g and in the centrifuge at 9g and 80g. With an identical setup at each g-level, stress-level effects were isolated. Qualitatively, the responses are similar across the stress levels, but some important quantitative differences are revealed. In particular, the rate of accumulation of pile displacement and the rate of change of secant stiffness under cyclic loading are found to reduce with increasing stress level. The results highlight the need to simulate full-scale stress levels to thoroughly understand foundation behavior, but also demonstrate the qualitative insight that can be gained through 1g physical modeling. The data and trends presented in this paper provide input for the modeling of monopile responses at different stress levels.
    • Download: (3.436Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Stress Level on Response of Model Monopile to Cyclic Lateral Loading in Sand

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4271452
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorI. A. Richards
    contributor authorM. F. Bransby
    contributor authorB. W. Byrne
    contributor authorC. Gaudin
    contributor authorG. T. Houlsby
    date accessioned2022-02-01T00:27:01Z
    date available2022-02-01T00:27:01Z
    date issued3/1/2021
    identifier other%28ASCE%29GT.1943-5606.0002447.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4271452
    description abstractMonopile foundations supporting offshore wind turbines are exposed to cyclic lateral loading, which can cause accumulated pile displacement or rotation and evolution of the dynamic response. To inform the development of improved design methods, the monopile’s response to cyclic lateral loading has been explored through small-scale physical modeling at 1g and in the centrifuge, as well as at large-scale in the field. There are advantages and disadvantages to each physical modeling technique, and the response may be most efficiently explored through a combination of modeling techniques. However, stress levels vary significantly between these techniques, and only centrifuge testing can simulate full-scale stress levels. This paper explores the effect of stress level on the response of a monopile foundation in dry sand to monotonic, unidirectional cyclic and multidirectional cyclic lateral loading with small-scale tests at 1g and in the centrifuge at 9g and 80g. With an identical setup at each g-level, stress-level effects were isolated. Qualitatively, the responses are similar across the stress levels, but some important quantitative differences are revealed. In particular, the rate of accumulation of pile displacement and the rate of change of secant stiffness under cyclic loading are found to reduce with increasing stress level. The results highlight the need to simulate full-scale stress levels to thoroughly understand foundation behavior, but also demonstrate the qualitative insight that can be gained through 1g physical modeling. The data and trends presented in this paper provide input for the modeling of monopile responses at different stress levels.
    publisherASCE
    titleEffect of Stress Level on Response of Model Monopile to Cyclic Lateral Loading in Sand
    typeJournal Paper
    journal volume147
    journal issue3
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002447
    journal fristpage04021002-1
    journal lastpage04021002-16
    page16
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2021:;Volume ( 147 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian