YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effects of Leachate Recirculation System Variables on Long-Term Bioreactor Landfill Performance Using Coupled Thermo-Hydro-Bio-mechanical Model

    Source: International Journal of Geomechanics:;2021:;Volume ( 021 ):;issue: 005::page 04021059-1
    Author:
    Girish Kumar
    ,
    Krishna R. Reddy
    DOI: 10.1061/(ASCE)GM.1943-5622.0001990
    Publisher: ASCE
    Abstract: This study will apply a newly developed coupled thermo-hydro-bio-mechanical (CTHBM) numerical model to a typical full-scale landfill cell geometry with horizontal trenches (HTs) as the leachate recirculation system (LRS) and will evaluate the effect of the leachate injection pressure (IP), the horizontal spacing of the leachate injection locations (IS), and the mode of leachate injection (IM), on some of the major long-term hydraulic (e.g., wetted area), mechanical (e.g., differential waste settlement), biochemical [e.g., methane (CH4) gas production], and thermal (e.g., elevated temperatures) characteristics of bioreactor landfills. Based on the results from a series of numerical simulations with different IP, IS, and IM, it was determined that the variable IP had the most significant impact on the landfill performance compared with IS or IM. Higher IPs lead to a linear increase in the wetted area and a corresponding increase in the degraded waste area, thereby reducing the time taken for waste stabilization. However, an increase in IP leads to larger elevated temperature zones within the landfill and larger differential settlements on the landfill surface. Larger IS caused significantly higher differential waste settlements due to the formation of unwetted zones within the landfill cell. Increasing the duration of gaps between the intermittent injection periods significantly reduced the extent of elevated temperature zones formed within the landfill. The relative shear displacements in the geosynthetic interface in the bottom liner and final cover system were mainly influenced by the IP.
    • Download: (1.940Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effects of Leachate Recirculation System Variables on Long-Term Bioreactor Landfill Performance Using Coupled Thermo-Hydro-Bio-mechanical Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4271336
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorGirish Kumar
    contributor authorKrishna R. Reddy
    date accessioned2022-02-01T00:22:23Z
    date available2022-02-01T00:22:23Z
    date issued5/1/2021
    identifier other%28ASCE%29GM.1943-5622.0001990.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4271336
    description abstractThis study will apply a newly developed coupled thermo-hydro-bio-mechanical (CTHBM) numerical model to a typical full-scale landfill cell geometry with horizontal trenches (HTs) as the leachate recirculation system (LRS) and will evaluate the effect of the leachate injection pressure (IP), the horizontal spacing of the leachate injection locations (IS), and the mode of leachate injection (IM), on some of the major long-term hydraulic (e.g., wetted area), mechanical (e.g., differential waste settlement), biochemical [e.g., methane (CH4) gas production], and thermal (e.g., elevated temperatures) characteristics of bioreactor landfills. Based on the results from a series of numerical simulations with different IP, IS, and IM, it was determined that the variable IP had the most significant impact on the landfill performance compared with IS or IM. Higher IPs lead to a linear increase in the wetted area and a corresponding increase in the degraded waste area, thereby reducing the time taken for waste stabilization. However, an increase in IP leads to larger elevated temperature zones within the landfill and larger differential settlements on the landfill surface. Larger IS caused significantly higher differential waste settlements due to the formation of unwetted zones within the landfill cell. Increasing the duration of gaps between the intermittent injection periods significantly reduced the extent of elevated temperature zones formed within the landfill. The relative shear displacements in the geosynthetic interface in the bottom liner and final cover system were mainly influenced by the IP.
    publisherASCE
    titleEffects of Leachate Recirculation System Variables on Long-Term Bioreactor Landfill Performance Using Coupled Thermo-Hydro-Bio-mechanical Model
    typeJournal Paper
    journal volume21
    journal issue5
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0001990
    journal fristpage04021059-1
    journal lastpage04021059-15
    page15
    treeInternational Journal of Geomechanics:;2021:;Volume ( 021 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian