Show simple item record

contributor authorGirish Kumar
contributor authorKrishna R. Reddy
date accessioned2022-02-01T00:22:23Z
date available2022-02-01T00:22:23Z
date issued5/1/2021
identifier other%28ASCE%29GM.1943-5622.0001990.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4271336
description abstractThis study will apply a newly developed coupled thermo-hydro-bio-mechanical (CTHBM) numerical model to a typical full-scale landfill cell geometry with horizontal trenches (HTs) as the leachate recirculation system (LRS) and will evaluate the effect of the leachate injection pressure (IP), the horizontal spacing of the leachate injection locations (IS), and the mode of leachate injection (IM), on some of the major long-term hydraulic (e.g., wetted area), mechanical (e.g., differential waste settlement), biochemical [e.g., methane (CH4) gas production], and thermal (e.g., elevated temperatures) characteristics of bioreactor landfills. Based on the results from a series of numerical simulations with different IP, IS, and IM, it was determined that the variable IP had the most significant impact on the landfill performance compared with IS or IM. Higher IPs lead to a linear increase in the wetted area and a corresponding increase in the degraded waste area, thereby reducing the time taken for waste stabilization. However, an increase in IP leads to larger elevated temperature zones within the landfill and larger differential settlements on the landfill surface. Larger IS caused significantly higher differential waste settlements due to the formation of unwetted zones within the landfill cell. Increasing the duration of gaps between the intermittent injection periods significantly reduced the extent of elevated temperature zones formed within the landfill. The relative shear displacements in the geosynthetic interface in the bottom liner and final cover system were mainly influenced by the IP.
publisherASCE
titleEffects of Leachate Recirculation System Variables on Long-Term Bioreactor Landfill Performance Using Coupled Thermo-Hydro-Bio-mechanical Model
typeJournal Paper
journal volume21
journal issue5
journal titleInternational Journal of Geomechanics
identifier doi10.1061/(ASCE)GM.1943-5622.0001990
journal fristpage04021059-1
journal lastpage04021059-15
page15
treeInternational Journal of Geomechanics:;2021:;Volume ( 021 ):;issue: 005
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record