YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Bayesian Model Updating in Time Domain with Metamodel-Based Reliability Method

    Source: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2021:;Volume ( 007 ):;issue: 003::page 04021030-1
    Author:
    Masaru Kitahara
    ,
    Sifeng Bi
    ,
    Matteo Broggi
    ,
    Michael Beer
    DOI: 10.1061/AJRUA6.0001149
    Publisher: ASCE
    Abstract: In this study, a two-step approximate Bayesian computation (ABC) updating framework using dynamic response data is developed. In this framework, the Euclidian and Bhattacharyya distances are utilized as uncertainty quantification (UQ) metrics to define approximate likelihood functions in the first and second steps, respectively. A new Bayesian inference algorithm combining Bayesian updating with structural reliability methods (BUS) with the adaptive Kriging model is then proposed to effectively execute the ABC updating framework. The performance of the proposed procedure is demonstrated with a seismic-isolated bridge model updating application using simulated seismic response data. This application denotes that the Bhattacharyya distance is a powerful UQ metric with the capability to recreate wholly the distribution of target observations, and the proposed procedure can provide satisfactory results with much reduced computational demand compared with other well-known methods, such as transitional Markov chain Monte Carlo (TMCMC).
    • Download: (2.745Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Bayesian Model Updating in Time Domain with Metamodel-Based Reliability Method

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4270714
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering

    Show full item record

    contributor authorMasaru Kitahara
    contributor authorSifeng Bi
    contributor authorMatteo Broggi
    contributor authorMichael Beer
    date accessioned2022-01-31T23:59:52Z
    date available2022-01-31T23:59:52Z
    date issued9/1/2021
    identifier otherAJRUA6.0001149.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4270714
    description abstractIn this study, a two-step approximate Bayesian computation (ABC) updating framework using dynamic response data is developed. In this framework, the Euclidian and Bhattacharyya distances are utilized as uncertainty quantification (UQ) metrics to define approximate likelihood functions in the first and second steps, respectively. A new Bayesian inference algorithm combining Bayesian updating with structural reliability methods (BUS) with the adaptive Kriging model is then proposed to effectively execute the ABC updating framework. The performance of the proposed procedure is demonstrated with a seismic-isolated bridge model updating application using simulated seismic response data. This application denotes that the Bhattacharyya distance is a powerful UQ metric with the capability to recreate wholly the distribution of target observations, and the proposed procedure can provide satisfactory results with much reduced computational demand compared with other well-known methods, such as transitional Markov chain Monte Carlo (TMCMC).
    publisherASCE
    titleBayesian Model Updating in Time Domain with Metamodel-Based Reliability Method
    typeJournal Paper
    journal volume7
    journal issue3
    journal titleASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    identifier doi10.1061/AJRUA6.0001149
    journal fristpage04021030-1
    journal lastpage04021030-11
    page11
    treeASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2021:;Volume ( 007 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian