YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Multilevel Decomposition Framework for Reliability Assessment of Assembled Stochastic Linear Structural Systems

    Source: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2021:;Volume ( 007 ):;issue: 001::page 04021003-1
    Author:
    Tanmoy Chatterjee
    ,
    Sondipon Adhikari
    ,
    Michael I. Friswell
    DOI: 10.1061/AJRUA6.0001119
    Publisher: ASCE
    Abstract: To reduce the computational cost of assembled stochastic linear structural dynamic systems, a three-staged reduced order model-based framework for forward uncertainty propagation was developed. First, the physical domain was decomposed by constructing an equivalent reduced order numerical model that limited the cost of a single deterministic simulation. This was done in two phases: (1) reducing the system matrices of the subcomponents using component mode synthesis and (2) solving the resulting reduced system with the help of domain decomposition in an efficient manner. Second, functional decomposition was carried out in the stochastic space by employing a multioutput machine learning model that reduced the number of eigenvalue analyses to be performed. Thus, a multilevel framework was developed that propagated the dynamic response from the subcomponent level to the assembled global system level efficiently. Subsequently, reliability analysis was performed to assess the safety level and failure probability of linear stochastic dynamic systems. The results achieved by solving a two-dimensional (2D) building frame and a three-dimensional (3D) transmission tower model illustrated good performance of the proposed methodology, highlighting its potential for complex problems.
    • Download: (1.925Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Multilevel Decomposition Framework for Reliability Assessment of Assembled Stochastic Linear Structural Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4270684
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering

    Show full item record

    contributor authorTanmoy Chatterjee
    contributor authorSondipon Adhikari
    contributor authorMichael I. Friswell
    date accessioned2022-01-31T23:58:53Z
    date available2022-01-31T23:58:53Z
    date issued3/1/2021
    identifier otherAJRUA6.0001119.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4270684
    description abstractTo reduce the computational cost of assembled stochastic linear structural dynamic systems, a three-staged reduced order model-based framework for forward uncertainty propagation was developed. First, the physical domain was decomposed by constructing an equivalent reduced order numerical model that limited the cost of a single deterministic simulation. This was done in two phases: (1) reducing the system matrices of the subcomponents using component mode synthesis and (2) solving the resulting reduced system with the help of domain decomposition in an efficient manner. Second, functional decomposition was carried out in the stochastic space by employing a multioutput machine learning model that reduced the number of eigenvalue analyses to be performed. Thus, a multilevel framework was developed that propagated the dynamic response from the subcomponent level to the assembled global system level efficiently. Subsequently, reliability analysis was performed to assess the safety level and failure probability of linear stochastic dynamic systems. The results achieved by solving a two-dimensional (2D) building frame and a three-dimensional (3D) transmission tower model illustrated good performance of the proposed methodology, highlighting its potential for complex problems.
    publisherASCE
    titleMultilevel Decomposition Framework for Reliability Assessment of Assembled Stochastic Linear Structural Systems
    typeJournal Paper
    journal volume7
    journal issue1
    journal titleASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    identifier doi10.1061/AJRUA6.0001119
    journal fristpage04021003-1
    journal lastpage04021003-10
    page10
    treeASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2021:;Volume ( 007 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian