YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effects of Pore Water Volume on K0 for Sand Subject to Freezing and Thawing

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2021:;Volume ( 147 ):;issue: 003::page 04020173
    Author:
    Incheol Kim
    ,
    Donghun Lee
    ,
    Yejin Kim
    ,
    Tae Sup Yun
    ,
    Junhwan Lee
    DOI: 10.1061/(ASCE)GT.1943-5606.0002468
    Publisher: ASCE
    Abstract: In this study, the coefficient of lateral earth pressure at rest (K0) for sand subject to freezing and thawing was investigated, focusing on the effect of pore water volume. Unfrozen (UF), frozen (FR), and thawed (TH) conditions were all addressed and considered in the investigation. Experimental testing programs were established and conducted to characterize the values of K0 for different degrees of saturation (Sr) and relative densities. The effects of freezing and thawing on K0 were significant for the fully saturated condition of Sr=100%, whereas they were negligible for partially saturated or unsaturated conditions. For FR condition, the values of K0 were low during the early loading stage and increased gradually as σv′ increased due to the breakage of pore ice. The lower K0 values for FR condition were more significant for higher Sr. After thawing, a net volume increase was observed for Sr=100%, thereby an increase in K0 took place. This phenomenon was suggested as an important aspect for the stability of retaining structures during thawing periods. The computerized tomography images and the shear wave velocities for UF and TH conditions confirmed the effect of Sr on K0. A K0 estimation method considering the effect of freezing and thawing was proposed, showing an improved prediction of K0.
    • Download: (1.483Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effects of Pore Water Volume on K0 for Sand Subject to Freezing and Thawing

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4269300
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorIncheol Kim
    contributor authorDonghun Lee
    contributor authorYejin Kim
    contributor authorTae Sup Yun
    contributor authorJunhwan Lee
    date accessioned2022-01-30T22:37:47Z
    date available2022-01-30T22:37:47Z
    date issued3/1/2021
    identifier other(ASCE)GT.1943-5606.0002468.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4269300
    description abstractIn this study, the coefficient of lateral earth pressure at rest (K0) for sand subject to freezing and thawing was investigated, focusing on the effect of pore water volume. Unfrozen (UF), frozen (FR), and thawed (TH) conditions were all addressed and considered in the investigation. Experimental testing programs were established and conducted to characterize the values of K0 for different degrees of saturation (Sr) and relative densities. The effects of freezing and thawing on K0 were significant for the fully saturated condition of Sr=100%, whereas they were negligible for partially saturated or unsaturated conditions. For FR condition, the values of K0 were low during the early loading stage and increased gradually as σv′ increased due to the breakage of pore ice. The lower K0 values for FR condition were more significant for higher Sr. After thawing, a net volume increase was observed for Sr=100%, thereby an increase in K0 took place. This phenomenon was suggested as an important aspect for the stability of retaining structures during thawing periods. The computerized tomography images and the shear wave velocities for UF and TH conditions confirmed the effect of Sr on K0. A K0 estimation method considering the effect of freezing and thawing was proposed, showing an improved prediction of K0.
    publisherASCE
    titleEffects of Pore Water Volume on K0 for Sand Subject to Freezing and Thawing
    typeJournal Paper
    journal volume147
    journal issue3
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002468
    journal fristpage04020173
    journal lastpage04020173-11
    page11
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2021:;Volume ( 147 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian