YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A p–y Model for Large Diameter Monopiles in Sands Subjected to Lateral Loading under Static and Long-Term Cyclic Conditions

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2021:;Volume ( 147 ):;issue: 002::page 04020164
    Author:
    W. Fuentes
    ,
    M. Gil
    ,
    G. Rivillas
    DOI: 10.1061/(ASCE)GT.1943-5606.0002448
    Publisher: ASCE
    Abstract: The design of large diameter monopiles subjected to cyclic lateral loading is of interest in many applications, such as, for example, in the offshore wind energy industry. Engineering design methods to estimate the deflection of these structures are required for this purpose. In the present work, a p–y model for large diameter monopiles subjected to lateral loading is proposed. The model considers a pile in cohesionless soil subjected to static and long-term cyclic loading. Its formulation features the consideration of nonlinear relations for the ultimate soil resistance pu and the initial subgrade modulus Epy0 among the soil depth and a cyclic factor that accounts for the effect of the soil density and loading amplitude. A relation is also proposed to account for a base shear force at the tip of the monopile. The proposed relations were employed and solved under the beam on nonlinear Winkler foundation (BNWF) approach and were adjusted to simulate a number of three-dimensional (3D) finite-element (FE) models accurately, accounting for variations on pile geometry, soil properties, and loading conditions. In the end, the performance of the proposed relations was evaluated through the comparison with a field test and a centrifuge test.
    • Download: (2.482Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A p–y Model for Large Diameter Monopiles in Sands Subjected to Lateral Loading under Static and Long-Term Cyclic Conditions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4269294
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorW. Fuentes
    contributor authorM. Gil
    contributor authorG. Rivillas
    date accessioned2022-01-30T22:37:33Z
    date available2022-01-30T22:37:33Z
    date issued2/1/2021
    identifier other(ASCE)GT.1943-5606.0002448.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4269294
    description abstractThe design of large diameter monopiles subjected to cyclic lateral loading is of interest in many applications, such as, for example, in the offshore wind energy industry. Engineering design methods to estimate the deflection of these structures are required for this purpose. In the present work, a p–y model for large diameter monopiles subjected to lateral loading is proposed. The model considers a pile in cohesionless soil subjected to static and long-term cyclic loading. Its formulation features the consideration of nonlinear relations for the ultimate soil resistance pu and the initial subgrade modulus Epy0 among the soil depth and a cyclic factor that accounts for the effect of the soil density and loading amplitude. A relation is also proposed to account for a base shear force at the tip of the monopile. The proposed relations were employed and solved under the beam on nonlinear Winkler foundation (BNWF) approach and were adjusted to simulate a number of three-dimensional (3D) finite-element (FE) models accurately, accounting for variations on pile geometry, soil properties, and loading conditions. In the end, the performance of the proposed relations was evaluated through the comparison with a field test and a centrifuge test.
    publisherASCE
    titleA p–y Model for Large Diameter Monopiles in Sands Subjected to Lateral Loading under Static and Long-Term Cyclic Conditions
    typeJournal Paper
    journal volume147
    journal issue2
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002448
    journal fristpage04020164
    journal lastpage04020164-20
    page20
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2021:;Volume ( 147 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian