YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Discrete-Element Method Simulations of the Seismic Response of Flexible Retaining Walls

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2021:;Volume ( 147 ):;issue: 002::page 04020157
    Author:
    Saman Farzi Sizkow
    ,
    Usama El Shamy
    DOI: 10.1061/(ASCE)GT.1943-5606.0002428
    Publisher: ASCE
    Abstract: In this study, an analysis of soil–retaining wall dynamic interaction is conducted using three-dimensional discrete-element method (DEM) simulations. Soil grains are treated as rigid spherical particles that are allowed to overlap one another at contact points. The flexible sheetpile-type retaining wall is simulated using rigid balls glued together by parallel bonds with specific strength and stiffness to mimic the physical properties and stiffness of a real wall. Owing to computational limitations, the high g-level concept and scaling laws for dynamic centrifuge testing are utilized to decrease the domain size and simulation time. In addition, free-field boundaries are employed at the lateral sides of the model to prevent the reflections of the propagating waves back to the assembly and enforce free-field motion. Seismic excitation is introduced to the system through the base wall, which represents the bedrock. The effects of different characteristics of the input seismic wave, such as its frequency and amplitude, on the dynamic response of the soil–sheetpile system are analyzed. Furthermore, data on the lateral thrust and bending moment on the wall and its deflection are collected. It is found that the lateral earth pressure and bending moment increase during seismic excitation and the final residual values are, in most cases, considerably larger than the initial static ones. It is also observed that the maximum amplification of ground acceleration behind the sheetpile, the amount of wall deformation, and the maximum level of internal forces and moments the sheetpile experiences during dynamic loading are strongly affected by the frequency and amplitude of the input motion. The results show that for ground acceleration stronger than a critical limit, the maximum lateral earth pressure stays almost at a constant level. However, the maximum dynamic bending moment on the wall is found to increase even for ground accelerations higher than the critical value.
    • Download: (3.875Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Discrete-Element Method Simulations of the Seismic Response of Flexible Retaining Walls

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4269283
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorSaman Farzi Sizkow
    contributor authorUsama El Shamy
    date accessioned2022-01-30T22:37:13Z
    date available2022-01-30T22:37:13Z
    date issued2/1/2021
    identifier other(ASCE)GT.1943-5606.0002428.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4269283
    description abstractIn this study, an analysis of soil–retaining wall dynamic interaction is conducted using three-dimensional discrete-element method (DEM) simulations. Soil grains are treated as rigid spherical particles that are allowed to overlap one another at contact points. The flexible sheetpile-type retaining wall is simulated using rigid balls glued together by parallel bonds with specific strength and stiffness to mimic the physical properties and stiffness of a real wall. Owing to computational limitations, the high g-level concept and scaling laws for dynamic centrifuge testing are utilized to decrease the domain size and simulation time. In addition, free-field boundaries are employed at the lateral sides of the model to prevent the reflections of the propagating waves back to the assembly and enforce free-field motion. Seismic excitation is introduced to the system through the base wall, which represents the bedrock. The effects of different characteristics of the input seismic wave, such as its frequency and amplitude, on the dynamic response of the soil–sheetpile system are analyzed. Furthermore, data on the lateral thrust and bending moment on the wall and its deflection are collected. It is found that the lateral earth pressure and bending moment increase during seismic excitation and the final residual values are, in most cases, considerably larger than the initial static ones. It is also observed that the maximum amplification of ground acceleration behind the sheetpile, the amount of wall deformation, and the maximum level of internal forces and moments the sheetpile experiences during dynamic loading are strongly affected by the frequency and amplitude of the input motion. The results show that for ground acceleration stronger than a critical limit, the maximum lateral earth pressure stays almost at a constant level. However, the maximum dynamic bending moment on the wall is found to increase even for ground accelerations higher than the critical value.
    publisherASCE
    titleDiscrete-Element Method Simulations of the Seismic Response of Flexible Retaining Walls
    typeJournal Paper
    journal volume147
    journal issue2
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002428
    journal fristpage04020157
    journal lastpage04020157-19
    page19
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2021:;Volume ( 147 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian