YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Efficient Adsorption of Tetracycline Using Cu+-Modified SBA-15 and Its Adsorption Mechanism

    Source: Journal of Environmental Engineering:;2021:;Volume ( 147 ):;issue: 001::page 04020142
    Author:
    Yuefeng Qiu
    ,
    Liming Kong
    ,
    Tonghe Chen
    ,
    Qin Xu
    DOI: 10.1061/(ASCE)EE.1943-7870.0001813
    Publisher: ASCE
    Abstract: Cu+-modified SBA-15 (Cu+/SBA-15, SBA-15 refers well-ordered hexagonal mesoporous silica) was prepared for adsorption of tetracycline (TC) by the pH adjusting reduction method. Some Cu+ species (Cu2O) are aggregated on the outside surface of SBA-15, and the other Cu+ species are highly dispersed in SBA-15 via ≡Si-O-Cu. Its adsorption mechanism was firstly studied via comparison with CuO/SBA-15. The TC adsorption kinetic of Cu+/SBA-15 fitted the pseudo-second-order model well. The adsorption isotherms at 293, 303, and 313 K were determined and modeled with Langmuir and Freundlich equations, and the Qmax of Cu+/SBA-15 for TC calculated from Langmuir model could reach 961.54  mg/g at 313 K. Its good adsorption performance for TC is associated with the high surface area of SBA-15, highly dispersed Cu+ species, and mesoporous structure. The adsorption of Cu+/SBA-15 for TC is an endothermic process, and adsorption heat is 66.88  kJ·mol−1, which implies that the adsorption process of Cu+/SBA-15 for TC is weak chemisorption. The adsorption mechanism of Cu+/SBA-15 was mainly explored via comparing with CuO/SBA-15 by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) spectroscopy analysis. Besides the coordination complexation of Cu+ with NH2 radical of TC, the π-complexation between Cu+, and the benzene ring of TC improved the adsorption capacity of Cu+/SBA-15 for TC comparing with CuO/SBA-15 and showed a dominant role for TC adsorption.
    • Download: (2.073Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Efficient Adsorption of Tetracycline Using Cu+-Modified SBA-15 and Its Adsorption Mechanism

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4269200
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorYuefeng Qiu
    contributor authorLiming Kong
    contributor authorTonghe Chen
    contributor authorQin Xu
    date accessioned2022-01-30T22:34:39Z
    date available2022-01-30T22:34:39Z
    date issued1/1/2021
    identifier other(ASCE)EE.1943-7870.0001813.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4269200
    description abstractCu+-modified SBA-15 (Cu+/SBA-15, SBA-15 refers well-ordered hexagonal mesoporous silica) was prepared for adsorption of tetracycline (TC) by the pH adjusting reduction method. Some Cu+ species (Cu2O) are aggregated on the outside surface of SBA-15, and the other Cu+ species are highly dispersed in SBA-15 via ≡Si-O-Cu. Its adsorption mechanism was firstly studied via comparison with CuO/SBA-15. The TC adsorption kinetic of Cu+/SBA-15 fitted the pseudo-second-order model well. The adsorption isotherms at 293, 303, and 313 K were determined and modeled with Langmuir and Freundlich equations, and the Qmax of Cu+/SBA-15 for TC calculated from Langmuir model could reach 961.54  mg/g at 313 K. Its good adsorption performance for TC is associated with the high surface area of SBA-15, highly dispersed Cu+ species, and mesoporous structure. The adsorption of Cu+/SBA-15 for TC is an endothermic process, and adsorption heat is 66.88  kJ·mol−1, which implies that the adsorption process of Cu+/SBA-15 for TC is weak chemisorption. The adsorption mechanism of Cu+/SBA-15 was mainly explored via comparing with CuO/SBA-15 by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) spectroscopy analysis. Besides the coordination complexation of Cu+ with NH2 radical of TC, the π-complexation between Cu+, and the benzene ring of TC improved the adsorption capacity of Cu+/SBA-15 for TC comparing with CuO/SBA-15 and showed a dominant role for TC adsorption.
    publisherASCE
    titleEfficient Adsorption of Tetracycline Using Cu+-Modified SBA-15 and Its Adsorption Mechanism
    typeJournal Paper
    journal volume147
    journal issue1
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/(ASCE)EE.1943-7870.0001813
    journal fristpage04020142
    journal lastpage04020142-9
    page9
    treeJournal of Environmental Engineering:;2021:;Volume ( 147 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian