Show simple item record

contributor authorYuefeng Qiu
contributor authorLiming Kong
contributor authorTonghe Chen
contributor authorQin Xu
date accessioned2022-01-30T22:34:39Z
date available2022-01-30T22:34:39Z
date issued1/1/2021
identifier other(ASCE)EE.1943-7870.0001813.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4269200
description abstractCu+-modified SBA-15 (Cu+/SBA-15, SBA-15 refers well-ordered hexagonal mesoporous silica) was prepared for adsorption of tetracycline (TC) by the pH adjusting reduction method. Some Cu+ species (Cu2O) are aggregated on the outside surface of SBA-15, and the other Cu+ species are highly dispersed in SBA-15 via ≡Si-O-Cu. Its adsorption mechanism was firstly studied via comparison with CuO/SBA-15. The TC adsorption kinetic of Cu+/SBA-15 fitted the pseudo-second-order model well. The adsorption isotherms at 293, 303, and 313 K were determined and modeled with Langmuir and Freundlich equations, and the Qmax of Cu+/SBA-15 for TC calculated from Langmuir model could reach 961.54  mg/g at 313 K. Its good adsorption performance for TC is associated with the high surface area of SBA-15, highly dispersed Cu+ species, and mesoporous structure. The adsorption of Cu+/SBA-15 for TC is an endothermic process, and adsorption heat is 66.88  kJ·mol−1, which implies that the adsorption process of Cu+/SBA-15 for TC is weak chemisorption. The adsorption mechanism of Cu+/SBA-15 was mainly explored via comparing with CuO/SBA-15 by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) spectroscopy analysis. Besides the coordination complexation of Cu+ with NH2 radical of TC, the π-complexation between Cu+, and the benzene ring of TC improved the adsorption capacity of Cu+/SBA-15 for TC comparing with CuO/SBA-15 and showed a dominant role for TC adsorption.
publisherASCE
titleEfficient Adsorption of Tetracycline Using Cu+-Modified SBA-15 and Its Adsorption Mechanism
typeJournal Paper
journal volume147
journal issue1
journal titleJournal of Environmental Engineering
identifier doi10.1061/(ASCE)EE.1943-7870.0001813
journal fristpage04020142
journal lastpage04020142-9
page9
treeJournal of Environmental Engineering:;2021:;Volume ( 147 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record