YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Finite-Element Modeling of Landfills to Estimate Heat Generation, Transport, and Accumulation

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2020:;Volume ( 146 ):;issue: 012
    Author:
    Zisu Hao
    ,
    Morton A. Barlaz
    ,
    Joel J. Ducoste
    DOI: 10.1061/(ASCE)GT.1943-5606.0002403
    Publisher: ASCE
    Abstract: In North America, temperatures nearing 100°C have been reported in several municipal solid waste landfills. However, the temporal and spatial-dependent processes that result in excessive heat accumulation are not well understood. The objective of this study was to develop a transient finite-element three-dimensional model that incorporates gas-liquid-heat reactive transfer in a landfill with biotic and abiotic reactions and spatially dependent heat transfer processes to better understand heat generation, accumulation, and propagation. The model incorporates gas-liquid-heat reactive transfer with aerobic and anaerobic biological reactions, anaerobic metal corrosion, and ash hydration and carbonation. Increasing boundary temperature, biological reaction rates, and landfill height increase the maximum temperature in the central region of a landfill, whereas the impact of thermal properties of municipal solid waste (MSW) is small. Simulation results predict that placement of ash near the corner of a landfill reduces the size of the elevated temperature region relative to placement in the landfill center. Mixing heat-generating wastes (ash or Al) with MSW decreases maximum temperatures but results in elevated temperatures over a larger fraction of the landfill volume relative to segregated ash disposal.
    • Download: (2.089Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Finite-Element Modeling of Landfills to Estimate Heat Generation, Transport, and Accumulation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4269005
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorZisu Hao
    contributor authorMorton A. Barlaz
    contributor authorJoel J. Ducoste
    date accessioned2022-01-30T21:53:23Z
    date available2022-01-30T21:53:23Z
    date issued12/1/2020 12:00:00 AM
    identifier other%28ASCE%29GT.1943-5606.0002403.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4269005
    description abstractIn North America, temperatures nearing 100°C have been reported in several municipal solid waste landfills. However, the temporal and spatial-dependent processes that result in excessive heat accumulation are not well understood. The objective of this study was to develop a transient finite-element three-dimensional model that incorporates gas-liquid-heat reactive transfer in a landfill with biotic and abiotic reactions and spatially dependent heat transfer processes to better understand heat generation, accumulation, and propagation. The model incorporates gas-liquid-heat reactive transfer with aerobic and anaerobic biological reactions, anaerobic metal corrosion, and ash hydration and carbonation. Increasing boundary temperature, biological reaction rates, and landfill height increase the maximum temperature in the central region of a landfill, whereas the impact of thermal properties of municipal solid waste (MSW) is small. Simulation results predict that placement of ash near the corner of a landfill reduces the size of the elevated temperature region relative to placement in the landfill center. Mixing heat-generating wastes (ash or Al) with MSW decreases maximum temperatures but results in elevated temperatures over a larger fraction of the landfill volume relative to segregated ash disposal.
    publisherASCE
    titleFinite-Element Modeling of Landfills to Estimate Heat Generation, Transport, and Accumulation
    typeJournal Paper
    journal volume146
    journal issue12
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002403
    page13
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2020:;Volume ( 146 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian