YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    3D Numerical Analyses of Column-Supported Embankments: Failure Heights, Failure Modes, and Deformations

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2020:;Volume ( 146 ):;issue: 012
    Author:
    Zhanyu Huang
    ,
    Katerina Ziotopoulou
    ,
    George M. Filz
    DOI: 10.1061/(ASCE)GT.1943-5606.0002385
    Publisher: ASCE
    Abstract: Design of column-supported embankments (CSE) requires the evaluation of global stability using the conventional limit equilibrium method (LEM). Yet, for CSEs using unreinforced concrete columns and load transferring geogrids, the failure mechanisms and corresponding soil-structure interactions are not well understood. There is increasing evidence pointing to large bending moments in columns and failure of columns in flexure, as opposed to a failure by shear as assumed in limit equilibrium analyses. In response to these design uncertainties, the failure height, failure mode, and deformations of eight column-supported embankment scenarios were investigated using three-dimensional (3D) numerical analyses. For the same embankment scenarios at failure height, factors of safety (FS) were then calculated using the two-dimensional (2D) LEM for investigating its applicability in evaluating global stability of CSEs. The 3D numerical analyses examined CSE stability for the limiting conditions at undrained end-of-construction and after long-term dissipation of excess pore water pressures. The numerical model included representations of flexural tensile failure in the concrete columns and tensile failure in the geosynthetic reinforcement. Scenarios consisted of a base case with typical concrete column design, five single-parameter variations using base case conditions, and two multiparameter variations using base case conditions. The undrained condition was the most critical, and two failure modes were found: (1) multisurface shearing in the embankment coupled with bending failure of columns and near-circular shear failure in the clay, and (2) multisurface shearing in the embankment coupled with bending failure of columns and shearing in the upper portion of the soft foundation clay. Both failure modes were accompanied by a rupture of the geosynthetic when included in the load transfer platform. Soil-column interactions were complex, and many columns failed in bending at lower embankment heights than those that produced collapse. The factors of safety calculated using the LEM were overstated. This is because the LEM assumes failure by shear, which has limited applicability for examining the complex mechanisms by which CSEs fail. The practical implication is that the LEM should not be used for evaluating global stability of this system type and, by extension, other system types in which soil-structure interactions result in failures controlled by mechanisms other than shear.
    • Download: (3.039Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      3D Numerical Analyses of Column-Supported Embankments: Failure Heights, Failure Modes, and Deformations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4268991
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorZhanyu Huang
    contributor authorKaterina Ziotopoulou
    contributor authorGeorge M. Filz
    date accessioned2022-01-30T21:52:49Z
    date available2022-01-30T21:52:49Z
    date issued12/1/2020 12:00:00 AM
    identifier other%28ASCE%29GT.1943-5606.0002385.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4268991
    description abstractDesign of column-supported embankments (CSE) requires the evaluation of global stability using the conventional limit equilibrium method (LEM). Yet, for CSEs using unreinforced concrete columns and load transferring geogrids, the failure mechanisms and corresponding soil-structure interactions are not well understood. There is increasing evidence pointing to large bending moments in columns and failure of columns in flexure, as opposed to a failure by shear as assumed in limit equilibrium analyses. In response to these design uncertainties, the failure height, failure mode, and deformations of eight column-supported embankment scenarios were investigated using three-dimensional (3D) numerical analyses. For the same embankment scenarios at failure height, factors of safety (FS) were then calculated using the two-dimensional (2D) LEM for investigating its applicability in evaluating global stability of CSEs. The 3D numerical analyses examined CSE stability for the limiting conditions at undrained end-of-construction and after long-term dissipation of excess pore water pressures. The numerical model included representations of flexural tensile failure in the concrete columns and tensile failure in the geosynthetic reinforcement. Scenarios consisted of a base case with typical concrete column design, five single-parameter variations using base case conditions, and two multiparameter variations using base case conditions. The undrained condition was the most critical, and two failure modes were found: (1) multisurface shearing in the embankment coupled with bending failure of columns and near-circular shear failure in the clay, and (2) multisurface shearing in the embankment coupled with bending failure of columns and shearing in the upper portion of the soft foundation clay. Both failure modes were accompanied by a rupture of the geosynthetic when included in the load transfer platform. Soil-column interactions were complex, and many columns failed in bending at lower embankment heights than those that produced collapse. The factors of safety calculated using the LEM were overstated. This is because the LEM assumes failure by shear, which has limited applicability for examining the complex mechanisms by which CSEs fail. The practical implication is that the LEM should not be used for evaluating global stability of this system type and, by extension, other system types in which soil-structure interactions result in failures controlled by mechanisms other than shear.
    publisherASCE
    title3D Numerical Analyses of Column-Supported Embankments: Failure Heights, Failure Modes, and Deformations
    typeJournal Paper
    journal volume146
    journal issue12
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002385
    page15
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2020:;Volume ( 146 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian