YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Investigations into Development of Seabed Trenching in Semitaut Moorings

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2020:;Volume ( 146 ):;issue: 010
    Author:
    Chao Sun
    ,
    M. Fraser Bransby
    ,
    Steven R. Neubecker
    ,
    Mark F. Randolph
    ,
    Xiaowei Feng
    ,
    Susan Gourvenec
    DOI: 10.1061/(ASCE)GT.1943-5606.0002347
    Publisher: ASCE
    Abstract: Field observations of semitaut mooring systems have shown severe trench development in front of suction caissons. Trenches extend back from where the chain emerges from the seabed under ambient mooring loads to relatively close to the caisson and with depths approaching the padeye depth. To help understand the process, a coupled Eulerian–Lagrangian (CEL) approach has been used to apply cyclic loading to a mooring chain system, treating the chain as a series of linked cylindrical elements and the soil as a strain-softening Tresca material. The chain extended through the soil into the water column, and cyclically changing boundary conditions were applied to the far end of the chain to reflect a typical mooring layout and metocean conditions. Despite rather idealized conditions, with loading restricted to the vertical plane of the chain and no consideration of hydrodynamic effects, a stable trench profile developed after only a few cycles of loading. The chain profile straightened during the cycles, with the section nearest to the padeye gradually cutting deeper into the soil and with the amplitude of cyclic motions of the chain, and hence tendency for a trench to form, increasing at shallower depths. The magnitude of soil resistance acting on the chain reduced by increasing cycles, with particularly low resistance in the zone where the trench was most developed. The long-term longitudinal profile of trenching was predicted based on the current modeling and was found comparable to that inferred from field observations, even without consideration of hydrodynamic and out-of-plane effects.
    • Download: (4.475Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Investigations into Development of Seabed Trenching in Semitaut Moorings

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4268950
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorChao Sun
    contributor authorM. Fraser Bransby
    contributor authorSteven R. Neubecker
    contributor authorMark F. Randolph
    contributor authorXiaowei Feng
    contributor authorSusan Gourvenec
    date accessioned2022-01-30T21:51:11Z
    date available2022-01-30T21:51:11Z
    date issued10/1/2020 12:00:00 AM
    identifier other%28ASCE%29GT.1943-5606.0002347.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4268950
    description abstractField observations of semitaut mooring systems have shown severe trench development in front of suction caissons. Trenches extend back from where the chain emerges from the seabed under ambient mooring loads to relatively close to the caisson and with depths approaching the padeye depth. To help understand the process, a coupled Eulerian–Lagrangian (CEL) approach has been used to apply cyclic loading to a mooring chain system, treating the chain as a series of linked cylindrical elements and the soil as a strain-softening Tresca material. The chain extended through the soil into the water column, and cyclically changing boundary conditions were applied to the far end of the chain to reflect a typical mooring layout and metocean conditions. Despite rather idealized conditions, with loading restricted to the vertical plane of the chain and no consideration of hydrodynamic effects, a stable trench profile developed after only a few cycles of loading. The chain profile straightened during the cycles, with the section nearest to the padeye gradually cutting deeper into the soil and with the amplitude of cyclic motions of the chain, and hence tendency for a trench to form, increasing at shallower depths. The magnitude of soil resistance acting on the chain reduced by increasing cycles, with particularly low resistance in the zone where the trench was most developed. The long-term longitudinal profile of trenching was predicted based on the current modeling and was found comparable to that inferred from field observations, even without consideration of hydrodynamic and out-of-plane effects.
    publisherASCE
    titleNumerical Investigations into Development of Seabed Trenching in Semitaut Moorings
    typeJournal Paper
    journal volume146
    journal issue10
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002347
    page14
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2020:;Volume ( 146 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian