YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Improving Hydraulic Conductivity Estimation for Soft Clayey Soils, Sediments, or Tailings Using Predictors Measured at High-Void Ratio

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2020:;Volume ( 146 ):;issue: 010
    Author:
    Y. Babaoglu
    ,
    P. Simms
    DOI: 10.1061/(ASCE)GT.1943-5606.0002344
    Publisher: ASCE
    Abstract: Consolidation parameters are required to support the disposal management of soft soils or mine tailings. The estimation of these parameters from simple correlations using easily measured properties can be advantageous, and considerable work has been done on this topic. This paper proposes two innovations that advance this work: (1) hydraulic conductivity–void ratio (k-e) estimation can be substantially improved by using a single measured value at a high-void ratio, and (2) the compressibility curve itself can be a useful predictor of k-e. Using these findings, general equations are derived that describe k-e using a power law, where the power is either 4 or 5. Examining 79 k-e data sets from clays, clayey tailings, and dredged materials, 94% of all predicted k values are within an order of magnitude of measured k-e values. This level of accuracy, coupled with the advantage of anchoring the k-e function by a measured value at a high-void ratio, is shown to result in robust predictions of settlement in large strain consolidation analyses.
    • Download: (1.970Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Improving Hydraulic Conductivity Estimation for Soft Clayey Soils, Sediments, or Tailings Using Predictors Measured at High-Void Ratio

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4268947
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorY. Babaoglu
    contributor authorP. Simms
    date accessioned2022-01-30T21:51:04Z
    date available2022-01-30T21:51:04Z
    date issued10/1/2020 12:00:00 AM
    identifier other%28ASCE%29GT.1943-5606.0002344.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4268947
    description abstractConsolidation parameters are required to support the disposal management of soft soils or mine tailings. The estimation of these parameters from simple correlations using easily measured properties can be advantageous, and considerable work has been done on this topic. This paper proposes two innovations that advance this work: (1) hydraulic conductivity–void ratio (k-e) estimation can be substantially improved by using a single measured value at a high-void ratio, and (2) the compressibility curve itself can be a useful predictor of k-e. Using these findings, general equations are derived that describe k-e using a power law, where the power is either 4 or 5. Examining 79 k-e data sets from clays, clayey tailings, and dredged materials, 94% of all predicted k values are within an order of magnitude of measured k-e values. This level of accuracy, coupled with the advantage of anchoring the k-e function by a measured value at a high-void ratio, is shown to result in robust predictions of settlement in large strain consolidation analyses.
    publisherASCE
    titleImproving Hydraulic Conductivity Estimation for Soft Clayey Soils, Sediments, or Tailings Using Predictors Measured at High-Void Ratio
    typeJournal Paper
    journal volume146
    journal issue10
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002344
    page9
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2020:;Volume ( 146 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian