YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Relationship between Water Vapor Sorption Kinetics and Clay Surface Properties

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2020:;Volume ( 146 ):;issue: 009
    Author:
    Idil Deniz Akin
    ,
    William J. Likos
    DOI: 10.1061/(ASCE)GT.1943-5606.0002337
    Publisher: ASCE
    Abstract: A complete understanding of soil–water interactions and the corresponding mechanical behavior of unsaturated soils requires differentiating adsorptive and capillary components of water retention and dominant water uptake mechanisms. Water vapor sorption (WVS) isotherms have historically been used to quantify the water uptake behavior of clayey soils and to determine related mineral surface properties, such as specific surface area and cation exchange capacity. This paper introduces the WVS kinetics curve as a new measure for gaining additional insights into the WVS behavior of clays. The sorption rate calculated from WVS kinetics curves scales with the cation heat of hydration at low relative humidity (RH<10%), indicating that cation hydration is the first mechanism for water uptake by dry clays. Sorption rates up to 25% RH are related to monolayer adsorption and specific surface area (SSA). A distinct relationship is proposed to relate SSA to the sorption rate normalized with predominant cation valence.
    • Download: (883.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Relationship between Water Vapor Sorption Kinetics and Clay Surface Properties

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4268940
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorIdil Deniz Akin
    contributor authorWilliam J. Likos
    date accessioned2022-01-30T21:50:46Z
    date available2022-01-30T21:50:46Z
    date issued9/1/2020 12:00:00 AM
    identifier other%28ASCE%29GT.1943-5606.0002337.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4268940
    description abstractA complete understanding of soil–water interactions and the corresponding mechanical behavior of unsaturated soils requires differentiating adsorptive and capillary components of water retention and dominant water uptake mechanisms. Water vapor sorption (WVS) isotherms have historically been used to quantify the water uptake behavior of clayey soils and to determine related mineral surface properties, such as specific surface area and cation exchange capacity. This paper introduces the WVS kinetics curve as a new measure for gaining additional insights into the WVS behavior of clays. The sorption rate calculated from WVS kinetics curves scales with the cation heat of hydration at low relative humidity (RH<10%), indicating that cation hydration is the first mechanism for water uptake by dry clays. Sorption rates up to 25% RH are related to monolayer adsorption and specific surface area (SSA). A distinct relationship is proposed to relate SSA to the sorption rate normalized with predominant cation valence.
    publisherASCE
    titleRelationship between Water Vapor Sorption Kinetics and Clay Surface Properties
    typeJournal Paper
    journal volume146
    journal issue9
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002337
    page6
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2020:;Volume ( 146 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian